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We study the relation between a class of 0—1 integer linear programs and their rational
relaxations. We give a randomized algorithm for transforming an optimal solution of a relaxed
oblem into a provably good solution for the 0—1 problem. Our technique can be a of extended
‘to provide bounds on the disparity between the rational and 0—1 optima for a given problem
-instance.

1. General Outline

\ The relation of an integer program to its rational relaxation has been the
subject of considerable interest [1], [5], [11]. Such efforts fall into two mtegorles

(1) Showing existence results for feasible solutions to an integer program in terms of
‘the solution to its rational relaxation, and (2) Using the information derived from the
solution of the relaxed problem in order to construct a provably good solution to the
riginal integer program.

We present a technique here which we call randomized rounding. This tech-
nique is applicable to a class of 0—1 integer linear programs, and yields results in
oth the categories listed above. Our technique is probabilistic; for the existence
sults, we prove that the solution to an integer program satisfies a certain property
by showing that a randomly generated solution satisfies that property with non-zero
probability. In this random generation of solutions, we make use of the optimal
solution to the rational relaxation linear program. By modifying the procedure used
to derive the existence result, we can obtain an algorithm that is provably good in the
following sense. We show that with high probability, our algorithm will provide an
integer solution in which the objective function takes on a value close to the opti-
mum of the rational relaxation. This is a sufficient condition to show the near-opti-
mality of our 0—1 solution since the optimal value of the objective function in the
relaxed version is no worse than the optimal value of the objective function in the
‘original 0—1 integer program.

. This work was supported by Semiconductor Research Corporation grant SRC 82-11-008
and an IBM Doctoral Fellowship.
. AMS ‘subject classification: 90 C 10.
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We now give a general outline of the technique. Let IT; be a 0—1 linear
program, with variables x;€ {0, 1}. Let ITg be its rational relaxation, with x,€[0, 1}.
The basic algorithm consists of the following two phases:

(1) Solve IIg; let the variables take on values #,€[0, 1].
(2) Set the variables x; randomly to one or zero according to the following rule:

(1.1) Prob. [x; = 1] = %,

In proving results about the outcome of our algorithm, we repeatedly make
use of the following results from probability theory. Let B(m, N, p) denote the prob-
ability that there will be at least m successes in N Bernoulli trials each with success
probability p.

Theorem 1.1. (Hoeffding) [6]. If ¥,, ¥y, ..., ¥y are completely independent Bernoulll
trials such that E(¥,)=p, and ¥Y=¥,+ ¥s+...+ ¥y, we have

(1.2) Prob. (¥ = m) = B(m, N, p)
where
N
kg; Pr
p = N . l

The other fact fhat we require is a bound on the tail of the binomial distri-
bution due to Angluin and Valiant [2], based on a general technique due to H. Cher-
noff [3]:

Theorem 1.2. If m=(1+p)-Np, then for 0<p=1,
(1.3) B B(m, N, p) < exp(__

Remark. The inequality can be shown to be strict provided Np=0.

In the next two sections, we provide some direct applications of the technique:
section 2 deals with a routing problem that arises in the design of VLSI circuits, and
the following section treats the 0—1 multicommodity flow problem. Section 4 provi-
des an extension to the basic technique in order to deal with some situations that
cannot be directly handled. The problem of simple k-matching is used to illustrate
this extension, which we call scaling. Section 5 concludes with remarks on whether
our bounds can be improved.

2. A Routing Problem im VLSI

In this section we illustrate the basic principles of the randomized rounding
technique by means of a routing problem that arises in the design of a certain class
of VLSI circuits. The problem is that of global routing in gate-arrays [14], and is
defined as follows.

We are given a two-dimensional rectilinear nXn lattice L,. In the context of
gate-arrays, lattice-nodes represent logic circuit elements and lattice-edges represent
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- channels in which wires used to connect the nodes can be routed. In an instance of a
- global routing problem, we are given a collection of nets, where a net g; is a set of
‘nodes to be connected by means of a Steiner tree in L,. In addition, for each net a;,
we are given a set of possible trees b;; that can be used for connecting the nodes in
that net. A solution to the problem consists of choosing one tree for each net in the
“instance, from the allowed possibilities for that net. The number of trees in a solution
“that contain a given lattice edge is termed the width of that edge in that solution. The
“width of a solution is the maximum width of an edge taken over all edges in the lattice.
. QOur objective is to find a solution of minimum width.

: This problem is readily formulated as a 0—1 integer program by assigning
a variable for each configuration of each net: thus, let x;; be an indicator variable
~denoting whether or not the j* tree b; is chosen for net g;. Constraints of the form

;"(2.1) Sxy=1 Vi

“ensure that a choice is made for each net. The number of trees in the solution that
_contain a given edge e is bounded above by an unknown quantity W which we seek
~to minimize in an objective function. We express these constraints by means of

(2.2) Z xu = VV, Ve
and b;, contains e
(23) Minimize W, s.t. (2.1), (2.2) and x,€{0,1} Vi, j.

The formulation above is similar to formulations due to Hu and Shing [7]
and Karp et al. [10]. Consider a linear programming relaxation of (2.3) in which
fractional solutions are allowed:

(2.3a) Minimize W, s.t. (2.1), (2.2) and x,,€[0,1] Vi, j.

The optimum solution to (2.3a) can be found in polynomial time [8]. Let the optimum
(fractional) value of x;; be £,;. Furthermore, let W, be the optimum width obtained
from the linear program solution; W, is a lower bound on the best possible integer
optimum width. We now seck to use these fractional solutions to obtain integer solu-
tions (2.3). We do this by means of randomization: for each i, set x;; to one with
probability £;;. The choice is done in an exclusive manner, with constraint (2.1): for

~each i, exactly one of the x;; is set to one; the rest are set to zero. This random
choice is made independently for all i.

Theorem 2.1. Let ¢ be a positive real such that O<e<1. Provided
W, = 31In (2n(n—1)/e),
the width of the solution produced by the above procedure does not exceed

2n(n—1) 1/
2.4 W1+(3 W, In _e——]

with probability at least 1—e.

Proof. The proof follows from the observation that the width of a latticeedge e is
the sum of independent Bernoulli trials. The expected value of this sum is no more
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than W,, since the biases used for the coin-flipping were the X;; determined by the
LP. Hoeffding’s lemma is thus applicable with p= W,/N. Chernoff’s bound is now
applied with ,
1/2
3ln 2n(n—1)
&
W,

This ensures that the rounded width of any edge does not exceed the upper bound in
(2.4) with probability at least 1—e/(2n(n— 1)); then the maximum of the widths of
the 2n(n—1) edges in the lattice does not exceed (2.4) with probability 1—. 1}

29) B=

The second (randomization) stage can be repeated to improve the solution.
In nXn gate-arrays, W, grows as n° [13] for some ¢€(0.5,1]. The approximation of
Theorem 2.1 is thus asymptotically a good one in that our solution is weaker than the
best possible by an additive term.

Theorem 2.1 gives (probabilistically) a provably good solution to the routing
problem. Viewed in a slightly different light, it is also a proof that there exists an
integer solution to (2.3) whose objective function value is related to W, by the follow-
ing relation.

Theorem 2.2. Let W,>31n 2n(n—1) be the optimum objective function value of the
linear programming relaxation of (2.3). Then, there exists an integer solution of width
not exceeding ,

(2.6) W +(3-W;-In2n(n—1) 12,
Proof. Similar to the proof of Theorem 21. &

3. Undirected Mnlticommodity Flow Problems | .’

~ . In undirected multicommodity flow problems, we are given an undirected
graph G(V, E). In an instance of the problem, various vertices are the sites of sources
and sinks (sources are denoted by ; and sinks by #;, 1=i=k). A vertex v€EV may
be the location of more than one source (sink). One unit of flow is to be conveyed
from each source s; to its corresponding sink £ through the edges in E. Each edge
e E has a capacity c(e) which is an upper limit on the total amount of flow in e. We
insist that the flow of any commodity in any edge be either zero or one. Note that an
edge could have flow going in both directions; for instance, the flow from s; to
(hereafter referred to as the flow of commodity i) could be in a direction opposite
to that of the flow of commodity j in some edge e. Each of these commodities uses up
one unit of the capacity of that edge, regardless of their direction. |

We consider two types of such multicommodity flow problems. In the first
kind, we try to maximize the total flow subject to meeting the capacity constraints
(as well as conservation constraints for each commodity at each vertex). In a second
variant of the problem, we require that all edges must have the same capacity ; we
try to minimize this common capacity while realizing unit flows for all k commodi-
ties. In this section, we focus on the second variant ; the techniques used in its solu-
tion, together with some new ones to be introduced in the next section, can be used




RANDOMIZED ROUNDING 369

solve the first variant. The general integral problem is known to be NP-Complete
although the non-integral version can be solved using linear programming me-
ds [9] in polynomial time.

The algorithm consists of the following three major phases:

1) Solving a non-integral multi-commodity flow problem.
2) Path stripping. '
3) Randomized path selection.

on-integral Muticommodity Flow: As in the previous section, we relax the require-
ent of 0—1 flows to allow fractional flows in the interval [0,1]. The relaxed capacity-
imization problem can be solved, for instance, by linear programming. Let us
hen assume that we have solved the non-integral problem and assigned to each edge
E a flow fi(e)€[0, 1] for each commodity i. A capacity constraint of the form

. ' é]}(e) =C

s then satisfied for each e€E, where C is the opt1ma1 solution to our nonintegral
dge-capacity optimization problem. As before, C is a lower bound on the best pos-
ible integral solution.

Path stnppmg The main idea of this phase is to convert the edge flows for each com-
modity i into a set I'; of possible paths which could be used to realize the flow of that
commodity. Initially, I'; is empty.

or each i:

1) Form a directed graph G,(V, E;) where E,is a set of directed edges derived from E
as follows: For each e€E, assngn a direction to e which is the direction of ﬂow A
of commodity i in e. If f;(e)=0, e is excluded from E;.

: (2) Discover a directed path {e,, ..., e,} in G from s, to ¢; using a depthﬁrst scarch
+  discarding loops. Let

3.2) fw=min {fie), 1=j=p}).

 For 1=jsp, replace fi(e;) by fi(e))—fm- Add the path {e,, ..., e} to I', along
' with its weight f,,.
' (3) Remove any edges with zero flow from E;. If there is non-zero flow leaving s;,
~ repeat step (2). Otherwise, next i.
j It is clear that the above process terminates, since at each execution of step
{2), at least one edge (the one with minimum flow in the path) is deleted from E;.
Thus the number of times it is executed is upper bounded by IE,I It is also evident
that on termination, the sum of the weights of the paths in I'; is one.
‘ The idea of path-stripping is similar to one used in the network-flow algorithm
~ of Malhotra et al. [12]. Their method of finding a blocking flow in a layered network
~ consists of successively saturating vertices of minimum throughput.

" Randomization: For each i:

Cast a [I']-faced die with face-probabilities equal to the wenghts of the paths
in I';. Assign to commodity i the path whose face comes up. Next i.
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We can then prove a theorem similar to Theorem 2.1:

Theorem 3.1. Let & be a positive real such that O<e<1. Provided C=21In L},
the integer capacity of the solution produced by the above procedure does not exceed

1/2
3.3) C+(3 -C:ln li—l]
with probability at least 1—e.
Proof. The proof is similar to that of Theorem 2.1, invoking Hoeffding’s and Cher-
noff’s inequalities. The expected number of unit flows through edge e is given by

G.D. 1

An existence result similar to Theorem 2.2 can be inferred readily from the
above theorem. In [14] it is shown that the path-stripping and randomization phases
described above can be replaced by a random-walk, with the same results.

4. Randomized Rounding with Scaling

The problems considered in the previous sections were similar in that the
right-hand sides of the major constraints were the objective function itself (W in
the routing problem and C in the flow problem). In this section we will consider the
case when the right-hand sides of the constraints defining the problem are parameter
independent of the objective function. A new technique which we call scaling is intro-
duced in order to handle such problems.

Let k be a fixed quantity. Consider a constraint of the form

(4.1) Z X = k.

Moreover, suppose that we have fractional values #; for these variables (derived
from the solution of the appropriate relaxation), and the £; are then interpreted as
probabilities for a randomized rounding phase as in the previous sections. The diffi-
culty lies in the fact that there is a significant probability that the values of the x,
after rounding will not satisfy (4.1). Furthermore, it is not clear whether there is a
non-zero probability that the randomized rounding will yield a solution in which
none of n constraints is violated. We now present a device by which we can reduce the
probability that a constraint is violated to less than 1/n. We call this device scaling.
In this manner, we reduce the probability that some constraint is violated to less
than one. '

The idea is to multiply each of the £, by some fraction less than one. The result-
ant value is used in the rounding stage as the probability that x; is set to one. Intuiti-
vely, this reduces the number of variables that are set to one and thus the probability
that a constraint is violated. The example below illustrates the scaling technique,
together with the details of determining the fraction used. We consider the problem of
simple k-matching defined below. We use the terminology of Lovész [11].

A hypergraph H is a finite set of edges, where an edge is a non-empty subset of
an n-element set V. The elements of ¥ are called vertices. A k-matching of H is a set
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' M of edges such that each vertex in ¥ belongs to at most k of the edges in M. The
maximum number of edges in any k-matching of H is denoted by v, (H). A k-matching
simple if no edge of H occurs more than once in M. The maximum number of ed-
s in any simple k-matching of H is denoted by %, (H ). The problem of determining
(H) can be formulated as an integer program as follows.

Suppose H has n vertices and m edges. Let A be an nXm matrix in which all
‘the entries are either zero or one; A represents the vertex-edge incidence matrix of H.
Let x;, 1=i=m be 0—1 indicator variables that denote whether or not edge i is in
' M. Let x denote the m-vector of these variables. Let k be a fixed quantity. The con-
straints are represented by

42) A-xskeu,

-where u, is the n-vector of all ones. Consider the 0—1 integer linear program:
4.3) Maximize 3 x;, st (4.2), x€{0, 1},
T =l

As usual, we solve the LP relaxation with x,€[0, 1). Let & be the optimum
value of the objective function. Instead of directly proceeding to the randomization
phase, we multiply the optimal values £, for the variables by the Quantity 1—9;
the computation of & is described below. Let

(4.4) . x| = #-(1-9).

In the randomization stage, we now use the values x; as the probabilities rather than
the £,. After rounding, the expected sum of any row of (4.2) is no more than k-(1-4).
The expected value of the objective function is & - (1—8). In proving the quality of
the rounded solution, we require a version of theorem 1.2 that deals with deviations
below the mean of the binomial distribution:

Theorem 4.1. (Angluin and Valiant [2]). For 0<f=1,
@.5) PI¥ = (1—B) Np] < exp [—E-zN—p] B

Using theorem 4.1 together with theorems 1.1 and 1.2, we can now prove

Theorem 4.2. Let 8, and 5, be positive constants such that 5;>n-e** and 6,+8,<1.
Let a=(3/k)1n (n/6;) and
4a)1/3 —a ]

2
(4.6) v,:=a:.(1—5)=a:-[1-(“+ -
Then there exists an integer solution to (4.3) satisfying

1 1/2
“.7n = vp— (20,: In 3-) .
1

Remark. In essence, Theorem 4.2 guarantees the existence of an integer solution of
value vi— O((v))"%).
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Proof. We first show that for the choice of § in equation (4.6),
4.8) Prob. [A constraint is violated] < %

This follows directly from theorems 1.1 and 1.2, with f=§/(1—6). The condition
on J, in the statement of Theorem 4.2 guarantees that a<1/2 and thus that f<l1.
Thus the probability that any of the n constraints is violated is less than J,. By
theorem 4.1,

(4.9) Prob. [(4.7) is violated] = .

Since 6,+3d,<1, the statement of the theorem follows.

Note that Theorem 1.2 applies only if k>6-Inn, for otherwise é=1/2.

For the sake of variety, we have chosen to illustrate an existence result here,
rather than an algorithm as in the previous sections. By introducing a parameter &
representing the failure probability, we can modify the above theorem so that the
probability that the procedure succeeds is 1—¢ rather than merely non-zero. This
provides us with.a provably good algorithm for simple k-matching.

Consider the following modification of (4.2):

(4.10) ' Maximize 3'x, st. A-x=r
=1

where r is an n-vector of RHS values r;, 1=i=n. This may be thought of as a resource
allocation problem where r; units of resource i are available. Each of m jobs requires
one unit of each of various resources; if all resources necessary for a job are available,
it can be scheduled. We wish to maximize the number of jobs scheduled.

The following Theorem is analogous to Theorem 4.2.

Theorem 4.3. Let 6, and &, be positibe constants such that 6,4+ 6,<1. Let
(4.11) v = B(1-96)

where B} is the rational opttmum of (4.10). If there exists a constant 6 in the interval
(0,1/2] such that

5t
4.12) igz;exp [———3(1 _5)]<¢S,

then there exists an integer solution to (4.10) with objective function value at least

1 1/3
(4.13) (20,111 5] )
1

Proof. Similar to Theorem 4.2. §
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5. Conclusions

Our results from the preceding sections deal with a class of 0—1 optimization
roblems. In sections 2 and 3, we developed solutions to routing and multicommodity
ow problems that were close to the best possible solution. In section 4, we studied a
atching problem and a resource allocation problem. In both cases, we were able to
how the existence of solutions close to the rational optimum.

We have been able to apply randomized rounding only to 0—1 optimization
oblems with a very special structure. Furthermore, even for such structured prob-
lems, we require that the problem parameters lie in specific ranges in order that the
hnique be effective. For instance, in the k-matching problem in section 4, k had
1o be Q(log n). We have recently made some progress towards removing these restric-
tions. In joint, unpublished work with Joel Spencer, we have derived forms of the
ernoff bound that are tighter than the Angluin-Valiant bounds (theorems 1.2 and
.1) used in this paper. The new bounds will appear in [15].

It is worth examining the tightness of our results. In general, there are two
ain factors that make the bounds loose. Analysis of the sum of independent Ber-
oulli trials of success probabilities p,, ps, ..., py shows that Hoeffding’s inequality
is tightest when the probabilities are equal. If the probabilities in any problem in-
‘stance ITg span a wide range, Hoeffding’s bound is weak. A second weakness of our
‘bounds is that they relate a feasible 0—1 solution to the rational optimum, not to the
0—1 optimum. In some problem instances, the 0—1 optimum differs significantly
from the rational optimum; our bounds would then be closer to the best possible
than is suggested by our theorems.

‘Acknowledgement. We are grateful to Richard Karp for his assitance at various points
in this work, and to Narendra Karmarkar for suggesting that a probabilistic tech-
nique could be used for the VLSI routing problem described in section 2. We would
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comments.
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