JOURNAL OF COMPUTER AND SYSTEM SCIENCEs 37, 130-143 (1988)

Probabilistic Construction of Deterministic Algorithms:
Approximating Packing Integer Programs*

PRABHAKAR RAGHAVAN

IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
Received August 10, 1987

We consider the problem of approximating an integer program by first solving its relaxation
linear program and then “rounding” the resulting solution. For several packing problems, we
prove probabilistically that there exists an integer solution close to the optimum of the
relaxation solution. We then develop a methodology for converting such a - probabilistic
existence proof to a deterministic approximation algorithm. The algorithm mimics the
existence proof in a very strong sense. © 1988 Academic Press, Inc.

MOTIVATIONS AND MAIN RESULTS

Some of the earliest efforts in integer programming involved solving the under-

lying relaxation linear program and using the solution to try to find the integer

optimum. In general, this does not work well [14]. Recently, Aharoni et al. [1]
studied the relations between the optimum of an integer program and that of its
relaxation, for a class of hypergraph matching and covering problems. We consider
several packing integer programs arising in combinatorial optimization and the f

design of integrated circuits. In each case we compute the relaxation optimum and

use this information to develop an approximation algorithm for the integer

program.

In Section 1 we introduce the lattice approximation problem. This problem, first
studied by Beck and Fiala [3], can be stated informally as follows. We are given a
point p in multidimensional space; we are to find a lattice point g (one whose coor-
dinates are all integers) such that the vector p—gq has a “small” inner product with
every one of a set S of given vectors. Each vector in S can be thought of as the
normal to the hyperplane defining a constraint, or the objective, of a linear :
program. The point p may be thought of as the solution to the relaxation linear
program; we wish to find a feasible lattice point that is “nearby.” The requirement -

* This work was done while the author was a graduate student at the Computer Science Division,
University of California at Berkeley and was supported by an IBM Doctoral Fellowship. This paper is -
substantially the same as a paper of the same title presented at the 27th Annual IEEE Symposium on -

the Foundations of Computer Science.
130
0022-0000/88 $3.00

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

S ek

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 131

of small inner product says no constraint is violated by too much; we show that
this leads to provably good approximation algorithms.

For each of the problems we consider, we first show the existence of a provably
good approximate solution using the probabilistic method [5]. In Section 2 we
show that the probabilistic existence proof can be converted, in a very precise sense,
into a deterministic approximation algorithm. To this end we use an interesting
“method of conditional probabilities.” In Sections 3, 4, and 5 we apply our methods
to integer programs arising in packing, routing, and maximum multicommodity
flow. Further applications and directions for work are summarized in Section 6.

Throughout this paper our emphasis will be on the quality of approximation
achieved by our algorithms, rather than on their exact running times. From the
~ descriptions of our approximation algorithms, it will be clear that they run in
polynomial time. The time take to. solve the linear program relaxations of the
integer programs dominates the net running time theoretically (and, most likely, in
practice as well).

1. THE LATTICE APPROXIMATION PROBLEM

~ Weare given an nx r matrix C in which ¢; € [0, 1] for all i, j; and an r-vector
p=(py, - p,), where each p; is a real number. We are to compute an integer vector

(lattice point) ¢ = (g,, .., ¢,) that approximates p “well” in that every coordinate of

C-(p—q) is small in absolute value. We wish to bound the discrepancies

r

z cy(pi— q;)

j=1

4.=

1

(1.1)

in terms of the inner-products

r

$i= 2, CyPj (1.2)

j=1

~ Without loss of generality, we may consider the reals p; to be in the interval
[0, 1]—if not, we subtract their integer parts (floors) and consider the fraction that
. remains. Throughout this paper, we will consider a restricted class of solutions in
. which the g; are “rounded” versions of the p;, i, g;€ {0, 1}, for all j. Joel Spencer
. [17] showed that there always exists a lattice point such that 4,<6 \/;, for all i;
L his proof is unfortunately not constructive. _
Suppose we set each g, to 1 with probability p;, independently of all the other
components of g. Let us call this process randomized rounding. Each g; is thus a
Bernoulli trial and E[g;] = p,. Consider the random variable ¥, =3 _, ¢;g;:

r

E[¥]1= Y c,Elq;]=s.. (1.3)

j=1

© Note that 4,=|¥,—s,|.

132 PRABHAKAR RAGHAVAN

1.1. The Weighted Sum of Bernoulli Trials

In order to prove existence results using randomized rounding, we require an
additional fact from probability theory. We now derive bounds on the tail of the
distribution of the weighted sum of Bernoulli trials; these bounds were derived
jointly with Joel Spencer. The principles used in their derivation will be useful in the
construction of a deterministic algorithm for the lattice approximation problem, in
Section 2. Our bounds generalize and improve on bounds on the (unweighted) sum
of Bernoulli trials due to Angluin and Valiant [2]. o

Let a,, a,, .., a, be reals in (0, 1]. Let X,, X,, .., X, be independent Bernoulli
trials with E[X,;]=p;. We wish to study the random variable ¥=37_, a;X;:

r

E(¥Y]=Y a;p,=m. \ (14)

We prove a Chernoff-type bound [4] on the deviations of ¥ above its mean.

THEOREM 1. Let >0, and m= E[¥]= >0. Then

86 m

Proof.
Pr[¥>(146)m)=Pr[e¥>e" "]
<e M1+OmE[¥] (1.6)

for any positive real . The inequality is strict since m and & both exceed zero. Since
the X are independent, this can be written as

r

e’ Wl +d)m n [pjem, +1 —pj] <e W+ m l‘l exp[pj(em,_ 1)] (17)
ji=1 ji=1
For r=1In(1 +), this becomes

(1 +5)"“”""exp[Y pi{Ql +5)"f—1}]

j=1

<(1+6)"“+‘”-’"cxp[z (Sa,p,] (1.8)

i=1

()b‘ m
=[(1 +5)"*‘*’] - 0

Similarly, we can prove a theorem regarding deviations of ¥ below its mean m.

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 133

2
:
3
¢

TueoREM 2. . For ye (0, 1],

Pr[¥—m< -ym]<[(_1+—§)7+—ﬂ] : (1.10)

~ Remark. Tt is actually possible to give a somewhat tighter bound of
; exp(—y*m/2) (as did Angluin and Valiant for the case when all a;=1), but the
" bound here will be sufficient (and convenient) for our purposes.

By Theorems | and 2, we have bounded the tails of the distribution of ¥ by a

" function that is symmetric in the deviation. This enables us to make the following

 definitions. We denote by B(m, 6) our bound on the probability that the weighted
sum of Bernoulli trials with expectation m exceeds (1 + 8) m, for positive d:

B(m, §)=[e®/(1 +6) +2]1™ (1.11)

We denote by D(m,x) the deviation that results in the bound on the tail
probability being x:

B(m, D(m, x))=x. (1.12)

To give some intuition about the function D(m, x), we consider the following cases.

Case 1. m>In1/x. It can be shown that

12

D(m, x)<(e—1) ['“:’/"] . (1.13)
Case 2. m<In 1/x. A little manipulation yields

D(m, x) S —— In 1/x (1.14)

“min[(eln 1/x)/m]’

We have thus bounded the deviations above the mean necessary to ensure that
the tail probability is bounded by x. By Theorem 2, these bounds also hold for
deviations below the mean.

1.2. The Existence Proof

THEOREM 3. There exists an integer approximation vector q such that
4,<5;D(s;, 1/2n). (1.15)

Proof. We will show that if the integers g, are selected ‘using randomized
rounding, the resulting vector will satisfy (1.15) with non-zero probability. We thus
establish the existence of such a g using the probabilistic method {5}

Let us say the ith bad event B, occurs if 4, exceeds the bounds of (1.15). Consider

134 PRABHAKAR RAGHAVAN

the random variable ¥;. By (1.3), its mean is 30 ,CiPi=5i By the definitions
above,

Pr{¥,>s;+5,D(s;, 1/2n)1< 1/2n
Pr{ ¥, <s;—s;D(s;, 1/2n)] <1/2n.

Thus the probability of bad event f; is <1/n. Let us say a vector ¢ is “good” if no
bad event occurs. Since there are n possible bad events B, the probability that the
vector produced by randomized rounding is not good is <n(1/n)=1. Thus a
randomly chosen vector ¢ is good with non-zero probability, and the theorem
follows. 1

2. THE METHOD OF CONDITIONAL PROBABILITIES

We now show that the probabilistic existence proof of Theorem 3 can be
converted to a deterministic construction of a good vector g. We use an interesting
“method of conditional probabilities”; the deterministic algorithm will mimic the
probabilistic existence proof in a very strong sense.

It is instructive to model the computation by means of a decision tree. Consider a
complete binary tree T of r levels. Level j of T represents the setting of ¢, to 0 or .
For instance, if ¢, is set to 1, we proceed from the root of T to its left son; if g, is
set to 0, we proceed to the right son. Thus, assigning the variables ¢,, q2, . in
sequence to 0 or 1 amounts to walking down T from the root to a leaf. Each leal
corresponds to one of the 2 possible vectors g. In terms of the bounds of
Theorem 3, we could then speak of “good” leaves and “bad” leaves. Randomized
rounding is equivalent to taking the left son at level j with probability p;, and the
right son with probability 1 —p;; the choices at the various levels are made indepen-
dently. Theorem 3 tells us that T always has a good leaf. Our task is to walk down
the tree to a good leaf in deterministic polynomial time.

At a typical stage of the computation, we are at some node at level j in the trec.
1 < j<r. We have already walked down the first j— 1 levels, assigning ¢, 4,
in the process. We now wish to proceed to one of the two sons of the current nodc
(i.e., assign g;). Suppose (although this will not be the case) that randomized
rounding were executed at levels ‘j through r. Let P4, 9;- ,) denote the
conditional probability of a bad event occurring given ¢, .., ¢, and assuming
that randomized rounding is used to compute g;, ... 4, Then-

Pj(Qn s G |)=P,,'P,/+|(‘I|, v i 1> 1)
+(1—p)) Pii(qys s qi- 1 0) =
Piqys s qj,,)Zmin{PjH(q,,..., g, 1> 1) Piiiqys q_,-,,,O)}. 2.1

The following algorithm then suggests itself: for j=1 to r, at level j we set g, to 0

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 135

or 1 so as to minimize P;, ,(q,, .., g;_,, q;). The existence of at least one good leaf
(Theorem 3) implies that P, <1; combining this inductively with Eq. (2.1), we
conclude that

1> P, > Py(q,)> Ps(q,,49,)> --- > P,qy, . q,-1)> P(leaf), (2.2)

where P(leaf) is the probability that we have reached a bad leaf. Every leaf is either
bad or good; accordingly, P(leaf) is either O or 1. But our procedure takes us to a
leaf for which P(leaf) <1, so P(leaf) must be 0 and the leaf we have reached must be
good.

From an algorithmic standpoint, the difficulty lies in computing these conditional
probabilities efficiently. Let U(q,, .., ¢;_,) be an upper bound on PAqys s q;_1)
for all j, that can be efficiently computed. Further, let U {41, > q;—,) have the
property that

Uj(ql""’qj—l)zmin{ +l(ql’- ,q/ l’l) +l(ql9~ 9Q] 110)} (23)

Our algorithm would then be: for j=1 to r, assign to 9 that value which minimizes
Uj+1(q1, > 451, 4;)- At each stage:

(a) the function U is an upper bound on the function P (temporarily
omitting subscripts, etc. for brevity);

(b) By (2.3), U never rises in the course of the computation;

(c) the algorithm can be run efficiently since U can be computed efficiently.
We call this the method of pessimistic estimators, since at each stage we bound the
probability of failure from above. If we could find a pessimistic estimator such that
U(root) < 1, we are guaranteed to succeed.

2.1. Moment-Generating Functions and the Function U

We now derive a suitable function U; the manner in which we do so parallels the
proofs of the bounds in Theorems 1 and 2, and the existence proof of Theorem 3.
Recall that we said that the ith bad event B, is said to occur if, for the vector ¢ that
we compute, the ith discrepancy 4, exceeds the limits prescribed by Theorem 3. Let

L, =s1+D(s;, 1/2n)] -
L, =s[1-D(s; 1/2n)]. (24)
Thus, bad even B; occurs when ¥;>L,, or ¥,<L,_.

2.1.1. Bounding the Probability of B, at the Beginning

Consider the probability of bad event B, resulting from ¥, exceeding L, , at the
beginning of the computation (at the root of T). Following (1.7), for any real £,>0

Pr[¥,>L,, 1<e "+ [] [pe+1—p,]. (2.5)

j=1

136 PRABHAKAR RAGHAVAN

2.1.2. Updating the Bound: The Effect of Setting g, 10 Oorl

Suppose some g, Wwere assigned the value 1. Given this information, the
conditional probability that ¥; exceeds L,, is the probability that the sum of the
remaining random variables exceeds L,, —cy. This is bounded above by

e-is =0 T] B[] =e et] [pe+1=pil

jrk jt=k

Thus the conditional probability of ¥; exceeding L,, given g, =1 is just bounded
by replacing the term

pre™*i+1—pyi

by e*" in the bound function—an intuitively correct idea. Likewise, it can bc
verified that setting g, =0 has the effect that the term

pre™ '+ 1—pi

is replaced by 1.

2.1.3. The function U

The probability that any one of the random variables ¥; exceeds its upper limit is
bounded above by the sum of the individual probabilities in (2.5):

2 e—riL“. I"l [pjel'ijli+ 1 _p’] (27)

i=1 j=1

So far, we have discussed deviations of the random variables ¥, above their means.
a similar analysis gives a bound on the probability that for some i, ¥, falls below its
lower limit L, . Adding this bound to (2.7), we obtain an upper bound on the
probability that any bad event B, occurs:

U(root)= z {e*"l‘“ n [pje<-ur,-+|_pi]+e+:.'L,- 1’1 [pje—('iili_*_l_pj]}
j=1

j=1

<1 (2.8)

The last inequality holds for t;=In[1+ D(s;, 1/2n)]. Indeed, we used the above

bound (through Theorems 1 and 2) in the proof of Theorem 3, with these values ol

t,. Equation (2.8) gives us the value of U at the root of T. We saw (Section 2.1.2)
the effect of assigning some g, to 0 or 1 the updated value of U is always an upper
bound on the probability of a bad event, conditioned by the assignment of g,.

It remains to show that for any k, one of the two possible assignments of ¢,
reduces the value of U. We will show that this property is satisfied by U(root); a

E
3
!
;
;
x

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 137

similar argument applies to subsequent stages. We thus examine the effect of setting
q,. Equation (2.8) for U can be written as

Z B{p,ei+1—p,)+ Z Cdpe "+ 1-p,)

i=1 i=1

=P Z (Bie"' + Cie™ ")+ (1-p,) Z (B;+ C)), (2.9)

i=1 im]

where B; and C, are fixed numbers. If ¢, is set to 1, the new value of U is

Y. (B4 C,ecnt) (2.10)

fae]

while if q, is set to O the new value of U is

Y. (B;+C)). (2.11)
=]
Since (2.9) is a convex combination of (2.10) and (2.11), it is no less than the
smaller of (2.10) and (2.11). Thus we can proceed from the root of 7 to one of its
sons in such a manner that U does not rise. A similar argument for the general step
(updating U as we proceed) shows that the value of U does not rise in the course of
the computation. Thus 1 > U(leaf) > P(leaf).

THEOREM 4. The method of pessimistic estimators yields in deterministic
polynomial time an integer vector q such that

4,<5;D(s;, 1/2n), 1<ign (2.12)

This improves on a result of Beck and Fiala [3] who studied the case ¢;=0o0r1;
for this case they showed an algorithm for constructing an integer approximation g
such that 4,<(8n1n2n)"? for all i Using (1.13) and (1.14), we find that the
discrepancies guaranteed by our algorithm are asymptotically smaller than those of
the Beck-Fiala algorithm when s, is o(n). When s, grows as n, our constant factors
are better. In Sections 3-5 we consider applications of the theory developed above
to approximately solving certain integer programs.

2.2 The Effect of the Model of Computation

The function U in (2.8) requires the computation of exponential functions. In
practice this could be done by means of suitable approximations, perhaps yielding
a vector g with a guarantee close to that of Theorem 4. However, if we allow
ourselves only elementary arithmetic operations (as in the RAM model of
computation), the function U of (2.8) is not efficiently computable. We now show
that our results hold with slight modifications in the RAM model of computation.

138 PRABHAKAR RAGHAVAN

We first observe that for our choice 7;,=In[1 + D(s;, 1/2n)],
e''=1+ D(s;, 1/2n). (2.13)

Thus we do not have to compute logarithms. Examination of (2.8) shows that ¢’
(or e ") is raised to the power L,_ (or L,,). We ensure that these are integral
powers by replacing L,_ by L; =|L; |(and L;, by L;, =[L,, 7). These integers
are “small”—they do not exceed r in magnitude. Next, we observe that Theorem 3
holds a fortiori if we allow deviations upto L), —s; on the positive side and down
to L;_ —s; on the negative side. Consequently, U(root) remains <1 when the new
values L;, and L;_ are used in (2.8).

The main obstacle remaining in our computation of U is the exponentiation of e”
to the power ¢;, which we have so far permitted to be an arbitrary real. There*does
not seem to be an obvious way around this; we thus have to restrict our instances
to those for which ¢, € {0, 1}. Certainly this restriction does not affect our solutions
to the packing integer programs in the following sections. Whether we can allow
the c;; to assume real values and still achieve similar lattice approximations on the
RAM model of computation remains an interesting open problem.

3. VECTOR SELECTION AND ROUTING PROBLEMS

In the vector selection problem we are given 4, a collection of sets of vectors. Let
A= {4, .., A,}. Each set A, consists of n-vectors {¥{, .., V] }, where k;=|4,|. For
1 €i<n, the ith component v (i) of vector Vi is either 0 or 1. We are to choose
exactly one vector from each set 4;; we denote by V7 the vector chosen from 1,. We
wish to minimize [|3]_, V... Thls problem has important applications to global
routing in gate-arrays [7, 10, 15]; 4, represents the possible routes for a set of gates
to be connected in an integrated cnrcunt We wish to choose a route connecting each
set of gates so as to minimize the space requirements of the routing; details may be
found in [15].

This can be formulated as an integer program as follows. We use an indicator
(0—1) variable x/ to indicate whether or not the vector V/ is selected to represent
4;; here 1 <j<r and 1 <k <k;. The integer program is then: Minimize W subject
to x}, €0, 1 and

k

2 xf=1, I<j<r

k=1

r k . (3])
Z 2 o<W, I<i<n

This integer program can be shown to be NP-hard by a reduction very similar to
that of Kramer and van Leeuwen [11]. We solve the relaxation linear program
with x} e [0.1]; this yields fractional s lutions for the variables in the linear

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 139

sprogram which we denote by #;. Let W’ be the value of the objective function. The
pplication of randomized rounding consists of choosing ¥} to represent 1; with
probability #. The choice is made independently for the different j and mutually
~exclusively among the vectors in 4; (this may be thought of as casting a A-faced die
whose face probabilities are). Usmg Theorem 1, we cannow prove

 THEOREM 5. There exists a solution to the integer program (3.1) with W < WE,
- where
]

WE=W'.[1+D(W, 1/n)]. (32)

Proof. The linear program solutions satisfy

r kj
Y Y #-o)<W, 1<i<n (33)

J=1 k=1

For each i, randomized rounding makes (3.3) the sum of independent Bernoulli
. trials of mean < W'. The use of (1.12) yields the theorem (further details may be
“found in [15]). |

Using the method of pessimistic estimators, we have

THEOREM 6. We can approximate (3.1) in deterministic polynomial time to obtain
an integer solution with objective W' such that

W' <[WE), (34)

Proof. We use the method of conditional probabilities; the decision tree is no
longer binary, but rather has k; branches at level j. We construct a function U; the
upper bound from the moment generating function of ¥; now has terms of the form

r kj
e—til—W51 H l: 2 j{‘ exp[vlk(l) ['.]] (35)
Jj=1

k=1
corresponding to (2.5). The analysis is similar to that leading to Theorem 4. |}

The value W is a lower bound on the integer optimum. Using (1.13) and (1.14)
with x=1/n, we are guaranteed of finding an integer solution within a
multiplicative factor of the optimum; we thus have a fuily polynomial-time
approximation scheme (FPTAS) [14].

We pause to give the reader a concrete example of the kind of performance
bound our algorithm delivers. When W’ >Inn, we use (1.13) to show that our
approximation finds an integer solution with

W/ S[W +(e—1)[W Inn]"*],

where W’ is a lower bound on the best possible solution.

140 PRABHAKAR RAGHAVAN
4. PACKING PROBLEMS

Let 4 be an n x r matrix in which each entry a;€ {0, 1 }. Consider the followiny
integer linear program, with x;€ {0, 1}:

Max Y a,x; st Y a;x;<k, 2<i<n 4.1

Jj=1 j=1

This is a packing integer program in the following sense: we are trying to pack as
many of the column-vectors of 4 as possible into an n-dimensional cube of side 4.
The vector sum of the chosen vectors should fit in the cube. There is a scheduling
interpretation to the integer program (4.1). Each of the variables x; may bc
associated with a task. Rows 2 through n of the matrix each represent a machinc.
The entry a, indicates whether a unit time of machine { is required for the execution
of task j. We wish to maximize the number of tasks that can be scheduled for
execution within a finishing time k; here a;;=1, 1 <j<r.

For a,e{0,1}, Lovasz [12] calls this problem simple k-matching in an
(n—1)- nodc hypergraph. Rows 2 through n of the matrix A can be thought of as
the incidence matrix of a hypergraph H, with the rows representing the vertices and
the columns the edges. The element a,; is a 1 if edge j is incident on vertex i. Again,
ay;=1, 1 <j<r. The integer program (4.1) seeks the largest set of edges no more
than k of which are incident on any vertex.

In the following description, we use the terminology of k-matching. We solve the
relaxation linear program with x;e [0, 1]. Let the linear program yield a value x}*
for the variable x;. Let the value of the objective function be M*; Lovasz [12] calls
M* the fracuonal k-matching number of H. For all j, mdependently set x; to 1 with
probability x*. Let the resultant rounded value of variable x; be xi". The difficulty
now is that after rounding, Y}, a;x!" may exceed k for some i, thus violating a

I/ J
constraint. Let ve (0, 1) be a. number such that

B(vk, 1'”><1. (4.2)
v n

We have not as yet established under what conditions such a v must exist; let us
for the moment continue under the assumption that we do havc such a value of v.
The idea is to multiply each x* by v before rounding. Let x; = vx?. The superscript
S indicates a fractional value that has been scaled. As a result thc fractional value
of the objective function is also scaled down by the factor v; we let M S denote vM*.
Randomized rounding now consists of rounding variable x, to 1 with probability

v¥. We now show that there exists a solution such that no constramt is violated and
the rounded value of the objective function does not fall “too far” below M*.

THEOREM 7. There exists a k-matching of cardinality

=M% [1—-D(M?> 1/n)]. ‘ (4.3)

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 141

Proof. After rounding, the expected value of each constraint is no more than vk.
By our choice of v (4.2), the probability that a constraint is violated (i.e., its value
>xceeds k) is thus less than 1/a. Thus the proability that any constraint is violated is
ess than (n—1)/n. The expected value of the objective function is MS. The
probability that if falls below (4.3) is less than 1/n. Thus, there is a non-zero
probability of a matching of the size given by (4.3). {

Using the method of pessimistic estimators and the scaled variables x7, we have:

THEOREM 8. We can compute in deterministic polynomial time a k-matching of
cardinality at least

LMS.-[1—D(M5, 1/n]] (44)

The relaxation linear program optimum M* is an upper bound on the integer
yptimum. The value M in theorem 7 is smaller than M* by the multiplicative
actor v. Theorem 7 assures us of finding a k-matching that is smaller than M*° by a
subtractive factor.

For what values of k does there exist a positive value of v satisfying (4.2)?
Examination of (1.13) reveals that if k> Inn, v is a positive constant. In this case
ve have a FPTAS which approximates the k-matching to within a contant factor. If
t <In n, we still obtain a FPTAS by (1.14), though the approximation is not to
vithin a multiplicative constant. Further details of these approximations may be
ound in [16].

5. MaxiMmum MuLTicoMMODITY FLOW

Maximum 0-1 multicommodity flow is an important problem in operations
research [14]. We are given a directed graph G(V, E), and k source-sink pairs.
Each edge member E has a positive capacity c(e). For 1<j<k, the flow of
commodity j is said to be realized if we convey one unit of flow from source s; to
the corresponding sink ¢;. The flow must be integral; i.e., we must specify a path in
G from s; to 1, We wish to maximize the number of commodities whose flow is
realized (i.e., the total flow), with the constraint that the total flow in any edge e
does not exceed c(e).

This problem can be formulated as a 0-1 integer linear program. We know that
optimizing this integer linear program is NP-hard [6, 9]; but the relaxation linear
program can be solved efficiently. Let F\” be the optimum integer flow; let N = |E|
be the number of edges in the network; and let ¢ be the smallest edge capacity. Let
F* > F'D be the fractional maximum flow. Define v as in (4.2):

B(vc, 1—;—"> <L ‘ (5.1)

142 PRABHAKAR RAGHAVAN

Let FS be the scaled total flow. Using methods similar to those in Sections 3 and 4.
we can show

THEOREM 9. Pessimistic estimators will find a total multicommodity flow

>| FS- [t =D(FS, 1I/N+ 1]} (52)

6. CONCLUDING REMARKS

We have considered the problem of approximating an integer program by first
solving its linear program relaxation and rounding the resulting solution. For each
of the problems considered, we first presented a probabilistic proof of the existence
of an integer solution close to the linear program optimum. In Section 2 we
presented a methodology—the method of pessimistic estimators of conditional
probability—for converting such an existence proof into a deterministic
approximation algorithm. The vehicle used for developing this methodology was
the lattice approximation problem. The lattice approximation problem appears
intrinsic to the conversion to the conversion of linear program solutions to
approximate integer program solutions. Sections 3-5 outlined applications of our
technique to problems of practical interest. The following issues are noteworthy:

(1) Our algorithms use linear programming as a preliminary phase, before
rounding. The entire process is a polynomial-time computation due to the efficient
algorithms of Karmarkar [8] and others.

(2) Our methods improve on algorithms for some combinatorial problems
studied by Olsen and Spencer [13]. These involve 2-coloring the vertices of a
hypergraph and set-balancing.

(3) What other randomized procedures can be made deterministic by our
methods?

(4) Our deterministic algorithm is highly sequential, in that we round onc
variable at a time; is there an efficient way of determinstically rounding in parallel”

(5) Throughout, we naively (?) sum the probabilities of all bad
events—although these bad events are surely correlated. Can we prove a stronger
result using algebraic properties (e.g., the rank) of the coefficient matrix? A tighter
bound for the probabilistic existence proofs should lead to tighter approximation
algorithms. When the sum of the entries in every column of the coefficient matrix is
bounded above by some number g, Karp et al. [10] give a technique for rounding
such that all discrepancies are bounded by g.

CONSTRUCTION OF DETERMINISTIC ALGORITHMS 143

ACKNOWLEDGMENTS

I thank Joel Spencer for this encouragement and many suggestions in this work; Theorems 1 and 2

were obtained jointly with him. Thanks are also due to Clark Thompson for his encouragement and
suggestions, and to Ravi Boppana and Richard Karp for some interesting discussions. I thank the referee
whose insightful comments greatly enhanced the quality of this paper.

12,
13.
14.

REFERENCES

. R. AHARONL, P. ERDOS, AND N. LINIAL, Dual integer linear programs and the relationship between
their optima, in “Proceedings, 17th ACM Symposium on Theory of Computing, Providence, RI,
May 1985, pp. 476-482.

. D. ANGLUIN AND L.G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Comput. System Sci. 19 (1979), 155-193.

. J. BECK AND T. FiALA, “Integer-making” theorems, Discrete Appl. Math. 3 (1981), 1-8.

. H. CHERNOFF, A measure of asymptotic efficiency for tests based on the sum of observations, Ann.
Math. Siatist. 23 (1952), 493-509."

. P. ERDGs AND J. SPENCER, “The Probabilistic Method in Combinatorics,” Academic Press, New
York/London, 1974.

. 8. EVEN, A. ITAI, AND A. SHAMIR, On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput. § (1976), 691-703,

. T.C. Hu AND M. T. SHING, A decomposition algorithm for circuit routing, Math. Programming
Stud. 24 (1985), 87-103.

. N. KARMARKAR, A new polynomial-time algorithm for linear programming Combinatorica 4 (1984),
373-396.

. R.M. Karp, Reducibility among combinatorial problems, in “Complexity of Computer
Computations” (R. N. Miller and J. W. Thatcher, Eds.), pp. 85-104, Plenum, New York, 1972.

. R.M. KaRrp, F. T. LEiGHTON, R. L. Rivest, C. D. THOMPSON, U. V. VAZIRANI, AND V. V. VAZIRANI,
Global wire routing in two-dimensional arrays, in “Proceedings, 24th Ammual Symposism on
Foundations of Computer Science, 1983,” pp. 453-459.

. M. R. KRAMER AND J. VAN LEEUWEN, “Wire-Routing is NP-Complete,” Technical Report RUU-CS-

82-4, Department of Computer Science, Rijksuniversiteit Utrecht, 1982.

L. Lovasz, On the ratio of optimal and fractional covers, Discrete Math. 13 (1975), 383-390.

J. E. OLSON AND J. SPENCER, Balancing families of sets, J. Combin. Theory Ser. A 28 (1978), 29-37.

C.H. PapaDiMiTRIOU AND K. STEIGLITZ, “Combinatorial Optimization: Algorithms and

Complexity,” Prentice-Hall, Englewood Cliffs, NJ, 1982.

. P. RAGHAVAN AND C.D. THOMPSON, Provably good routing in graphs: Regular arrays, in
“Proceedings, 17th ACM Symposium on Theory of Computing, 1985,” pp. 79-87.

. P. RAGHAVAN AND C.D. THOoMPsON, Randomized rounding: Provably good algorithms and
algorithmic proofs, Combinatorica T (1987), 365-374.

. J. SPENCER, Six standard deviations, Trans. Amer. Math. Soc. 289 (1985), 679-706.

