
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #19: Dimension Reduction, Johnson-Lindenstrauss, etc. March 8, 2017
Lecturer: Anupam Gupta Scribe: Anupam Gupta, Sidhanth Mohanty

Today we’ll talk about dimensionality reduction, and some related topics in data streaming.

1 Dimension Reduction

Suppose we are given a set of n points {x1, x2, . . . , xn} in RD. How small can we make D and still
maintain the Euclidean distances between the points? Clearly, we can always make D = n − 1,
since any set of n points lies on a n−1-dimensional subspace. And this is (existentially) tight: e.g.,
the case when x2 − x1, x3 − x1, . . . , xn − x1 are all orthogonal vectors.

But what if we were OK with the distances being approximately preserved? There can only be
D orthogonal unit vectors in RD, there could be as many as exp(cε2D) unit vectors which are
ε-orthogonal—i.e., whose mutual inner products all lie in [−ε, ε]. Near-orthogonality allows us to
pack exponentially more vectors!

Put another way, note that

‖~a−~b‖22 = 〈~a−~b,~a−~b〉 = 〈~a,~a〉+ 〈~b,~b〉 − 2〈~a,~b〉 = ‖~a‖22 + ‖~b‖22 − 2〈~a,~b〉.

And hence the squared Euclidean distance between any pair of the points defined by these ε-
orthogonal vectors falls in 2(1± ε). So, if we wanted n points exactly at unit (Euclidean) distance
from each other, we would need n−1 dimensions. (Think of a triangle in 2-dims.) But if we wanted
to pack in n points which were at distance (1± ε) from each other, we could pack them into

O
(
logn
ε2

)
dimensions.

Now, we prove that we can pack exponentially many vectors in D dimensions. Indeed, to see how
N = exp(cε2D) vectors can be packed in D dimensions, pick N vectors uniformly at random and

independently from
{
± 1√

D

}
: the expected dot product of any two given vectors is 0 and the dot

product is the sum of D independent random variables that are either − 1
D or 1

D so we can say
something about concentration.

For two random vectors r1 and r2, a calculation using Chernoff bounds tells us

Pr[〈r1, r2〉 ≥ ε] ≤ exp

(
− 2ε2∑D

i=1

(
2
D

)2
)

= exp

(
−1

2
ε2D

)

If we have exp(−0.1ε2D) vectors, then union bound across all pairs gives us a probability strictly
less than 1 of any pair having a dot product greater than ε, completing the proof.

1.1 The Johnson Lindenstrauss lemma

The Johnson Lindenstrauss “flattening” lemma says that such a claim is true not just for equidistant
points, but for any set of n points in Euclidean space:
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Lemma 19.1. Let ε ∈ (0, 1/2). Given any set of points X = {x1, x2, . . . , xn} in RD, there exists
a map A : RD → Rk with k = O(ε−2 log n) such that

1− ε ≤ ‖A(xi)−A(xj)‖22
‖xi − xj‖22

≤ 1 + ε.

Note that the target dimension k is independent of the original dimension D, and depends only on
the number of points n and the accuracy parameter ε.

It is easy to see that we need at least Ω(1ε log n) using a packing argument. Noga Alon showed a

lower bound of Ω( logn
ε2 log 1/ε

). Larsen and Nelson showed that any linear dimensionality reduction

scheme must require Ω(ε−2 log n) dimensions for some data sets. And recently they showed the

tight and matching lower bound of Ω
(
logn
ε2

)
dimensions for any dimensionality reduction scheme

from n dimensions that preserves pairwise distances.

1.2 The construction

The JL lemma is pretty surprising, but the construction of the map is perhaps even more surprising:
it is a super-simple random construction. Let M be a k ×D matrix, such that every entry of M
is filled with an i.i.d. draw from a standard normal N(0, 1) distribution (a.k.a. the “Gaussian”
distribution). For x ∈ RD, define

A(x) =
1√
k
Mx.

That’s it. You hit the vector x with a Gaussian matrix M , and scale it down by
√
k. That’s the

map A. Note that it is a linear map: A(x) + A(y) = A(x + y). So suppose we could show the
following lemma:

Lemma 19.2. [Distributional Johnson-Lindenstrauss] Let ε ∈ (0, 1/2). If A is constructed
as above with k = cε−2 log δ−1, and x ∈ RD is a unit vector, then

Pr[‖A(x)‖22 ∈ 1± ε] ≥ 1− δ.

Then we’d get a proof of Lemma 19.1. Indeed, set δ = 1/n2, and hence k = O(ε−2 log n). Now
for each xi, xj ∈ X we get that the squared length of xi − xj is maintained to within 1 ± ε with
probability at least 1 − 1/n2. By a union bound, all

(
n
2

)
pairs of distances in

(
X
2

)
are maintained

with probability at least 1−
(
n
2

)
1
n2 ≥ 1/2. This proves Lemma 19.1.

A few comments about this construction:

• The above proof shows not only the existence of a good map, we also get that a random
map as above works with constant probability! In other words, a Monte-Carlo randomized
algorithm for dimension reduction. (Since we can efficiently check that the distances are
preserved to within the prescribed bounds, we can convert this into a Las Vegas algorithm.)
Or we can also get deterministic algorithms: see here.

• The algorithm (at least the Monte Carlo version) does not even look at the set of points X: it
works for any set X with high probability. Hence, we can pick this map A before the points
in X arrive.
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1.3 Some properties of Gaussians

We’ll be using basic facts about Gaussians, let’s just recall them. The probability density function
for the Gaussian N(µ, σ2) is

f(x) = 1√
2πσ

e
(x−µ)2

2σ2 .

We also use the following; the proof just needs some elbow grease.

Proposition 19.3. If G1 ∼ N(µ1, σ
2
1) and G2 ∼ N(µ2, σ

2
2) are independent, then for c ∈ R,

cG1 ∼ N(cµ1, c
2 σ21) (19.1)

G1 +G2 ∼ N(µ1 + µ2, σ
2
1 + σ22). (19.2)

1.4 The proof

Now, on to the proof of Lemma 19.2. Here’s the main idea. Imagine that the vector we’re con-
sidering is just the elementary unit vector e1 = (1, 0, . . . , 0). Then M e1 is just a vector with
independent and identical Gaussian values, and we’re interested in its length—the sum of squares
of these Gaussians. Let us analyze the expected value of the length of this random vector. Entry i
in this random vector (Me1)i is distributed as 1√

k
N (0, 1).

Thus, the expected value of the length is given by

E

[
k∑
i=1

(Me1)
2
i

]
=

k∑
i=1

E
[
(Me1)

2
i

] k∑
i=1

1

k
= 1

Since the expectation is 1, the heart is in the right place!

If these were bounded r.v.s, we’d be done—but they are not. However, their tails are very small,
so things should work out: they are pretty much bounded.

So, if we take a sum of a bunch of such random variables (actually of their squares), it should
behave pretty much like its mean (which is ∝ k), because of a Chernoff-like argument. And so the
expected length is close to

√
k, which explains the division by

√
k.

Of course this is very vague and imprecise. In fact, while the Laplace distribution with distribution
f(x) ∝ e−λ|x| for x ∈ R also has pretty thin tails—“exponential tails”, this won’t work the same,
even if you squint as hard as you like. It turns out you need “sub-Gaussian tails”. So we just need
to make all this precise, and remove the assumption that the vector was just e1. That’s what the
rest of the formal proof does: it has a few steps, but each of them is fairly elementary.

1.5 The proof, this time for real

Recall that we want to argue about the squared length of A(x) ∈ Rk. To start off, observe that
each coordinate of the vector Mx behaves like

Y ∼ 〈G1, G2, . . . , GD〉 · x =
∑

xiGi

where the Gi’s are i.i.d. N(0, 1) r.v.s. But then Proposition 19.3 tells us that Y ∼ N(0, x21 + x22 +
. . .+ x2D). And since x is a unit length vector, this is N(0, 1). So, each of the k coordinates of Mx
behaves just like an independent Gaussian!
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1.5.1 The Expectation

What is the squared length of A(x) = 1√
k
Mx, then? It is

Z :=
k∑
i=1

1

k
·G2

i

where each Gi ∼ N(0, 1), independent of the others. And since E[G2
i ] = Var(Gi) + E[Gi]

2 = 1, we
get E[Z] = 1.

1.5.2 Concentration about the Mean

Now to show that Z does not deviate too much from 1. And Z is the sum of a bunch of independent
and identical random variables. If only the Gi’s were all bounded, we could have used a Chernoff
bound and be done. But these are not bounded, so this is finally where we’ll need to do a little
work. 1 So let’s start down the ye olde Chernoff path, for the upper tail, say:

Pr[Z ≥ 1 + ε] ≤ Pr[etkZ ≥ etk(1+ε)] ≤ E[etkZ ]/etk(1+ε) =
∏
i

(
E[etG

2
i ]/et(1+ε)

)
(19.3)

for every t > 0. And what is E[etG
2
] for G ∼ N(0, 1)? Let’s calculate it:

1√
2π

∫
g∈R

etg
2
e−g

2/2dg =
1√
2π

∫
z∈R

e−z
2/2 dz√

1− 2t
=

1√
1− 2t

. (19.4)

for t < 1/2. So our current bound on the upper tail is that for all t ∈ (0, 1/2) we have

Pr[Z ≥ (1 + ε)] ≤
(

1

et(1+ε)
√

1− 2t

)k
.

Let’s just focus on part of this expression:(
1

et
√

1− 2t

)
= exp

(
−t− 1

2
log(1− 2t))

)
(19.5)

= exp
(
(2t)2/4 + (2t)3/6 + · · ·

)
≤ exp

(
t2(1 + 2t+ 2t2 + · · · )

)
(19.6)

= exp(t2/(1− 2t)).

Plugging this back, we get

Pr[Z ≥ (1 + ε)] ≤
(

1

et(1+ε)
√

1− 2t

)k
≤ exp(kt2/(1− 2t)− ktε) ≤ e−kε2/8,

if we set t = ε/4 and use the fact that 1−2t ≥ 1/2 for ε ≤ 1/2. (Note: this setting of t also satisfies
t ∈ (0, 1/2), which we needed from our previous calculations.)

Almost done: let’s take stock of the situation. We observed that ‖A(x)‖22 was distributed like an
average of squares of Gaussians, and by a Chernoff-like calculation we proved that

Pr[‖A(x)‖22 > 1 + ε] ≤ exp(−kε2/8) ≤ δ/2
1Note: we could take the easy way out, observe that the squares of Gaussians are chi-squared r.v.s, the sum of k

of them is chi-squared with k degrees of freedom, and the internets conveniently has tail bounds for these things. But
we digress.
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for k = 8
ε2

ln 2
δ . A similar calculation bounds the lower tail, and finishes the proof of Lemma 19.2.

Citations: The JL Lemma was first proved in this paper of Bill Johnson and Joram Lindenstrauss.
There have been several proofs after theirs, usually trying to tighten their results, or simplify the
algorithm/proof (see citations in some of the newer papers): the proof follows some combinations
of the proofs in this STOC ’98 paper of Piotr Indyk and Rajeev Motwani, and this paper by Sanjoy
Dasgupta and Anupam Gupta.

2 Using Random Signs instead of Gaussians

While Gaussians have all kinds of nice properties, they are real-valued distributions and hence re-
quire attention to precision. How about populating A with draws from other, simpler distributions?
How about setting each Mij ∈R {−1,+1}, and letting A = 1√

k
M? (A random sign is also called a

Rademacher random variables, the name Bernoulli being already taken for a random bit in {0, 1}.)
Now, we want to study the properties of

Z :=
k∑
i=1

 D∑
j=1

Aij · xj

2

. (19.7)

To keep subscripts to a minimum, consider the inner sum for index i, which looks like

Yi :=

(∑
j

Rj · xj
)

(19.8)

each Rj being an independent Rademacher variable.

E[Y 2
i ] = E[(

∑
j

Rjxj)(
∑
l

Rlxl)]

= E[
∑
j

R2
jx

2
j +

∑
j 6=l

RjRlxjxl]

=
∑
j

E[R2
j ]x

2
j +

∑
j 6=l

E[RjRl]xjxl =
∑
j

x2j .

if the Rj ’s are pairwise independent, since R2
j = 1 and E[RjRl] = E[Rj ] E[Rl] = 0 by independence.

Plugging this into (19.7) and recalling that Aij ∈ {− 1√
k
,+ 1√

k
} , we get

E[Z] =
k∑
i=1

1

k
E[Y 2

i ] =
k∑
i=1

1

k

∑
j

x2j = ‖x‖22. (19.9)

Just what we like! Now we just need to show that Pr[Z ∈ (1 ± ε)‖x‖22] ≥ 1 − δ as long as
k = Ω(ε−2 log δ−1).

2.1 Concentration Around the Mean via Subgaussian-ness

Let’s look over the proof in Section 1.5.2, and see what properties of Gaussians we used. We used
that for t ∈ (0, 1/2),

(?) E[etG
2
] ≤ 1√

1−2t
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but the rest of the Chernoff-like proof of Section 1.5 did not use any other facts about Gaussians.
We can prove (?) for Rademacher random variables using explicit calculations, but instead let’s
give a useful abstraction:

Definition 19.4. A random variable V is said to be subgaussian with parameter c if for all real s,
we have E[esV ] ≤ ecs2 .

(You can define subgaussian-ness alternatively as satisfying Pr[|V | > v] ≤ Ce−cv2 for suitable con-
stants c, C; these notes by Roman Vershynin show the two definitions are equivalent for symmetric
distributions.) Here are some useful facts:

Fact 19.5. The following facts hold:

(i) (Gaussian) For G ∼ N(0, 1), then E[esG] = es
2/2; i.e., it is 1/2-subgaussian.

(ii) (Rademacher) A Rademacher random variable is 1/2-subgaussian.

(iii) (Sums) If Vi’s are independent and ci-subgaussian, and x is some vector, then V =
∑

i xiVi
is also

∑
i cix

2
i -subgaussian.

Proof. The first fact about Gaussians is a simple calcuation:

E[esG] =
1√
2π

∫
x∈R

esxe−
x2

2 dx =
1√
2π
es

2/2

∫
x∈R

e−
(x−s)2

2 dx = es
2/2.

(Good — it’s heartening to know that a Gaussian is also subgaussian!)

For the second fact, observe that:

E[esR] =
es + e−s

2
= cosh s = 1 +

s2

2!
+
s4

4!
+ · · · ≤ es2/2.

Finally,

E[esV ] = E[e
∑
i(sxi)Vi ] =

∏
i

E[esxiVi ] ≤
∏
i

eci(sxi)
2

= ecs
2
∑
i x

2
i = es

2
∑
i cix

2
i .

The inequality in the middle uses the definition of subgaussian-ness.

Lemma 19.6. If V is subgaussian with parameter c, then E[esV
2
] ≤ 1√

1−4cs for s > 0.

Proof. Well, suppose G ∼ N(0, 1) is an independent Gaussian, then

EV [esV
2
] = EG,V [e

√
2sV G]

by the calculation we just did for Gaussians. (Note that we’ve just introduced a Gaussian into the
mix, without any provocation! But it will all work out.) Let just rewrite that

EG,V [e
√
2sV G] = EG[EV [e(

√
2sG)V ]].

Using the c-subgaussian behavior of V we bound this by

EG[ec(
√
2s|G|)2 ] = EG[e2csG

2
].

Finally, the calculation (19.4) gives this to be 1√
1−4cs .
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Excellent. Note that Yi is a weighted sum of Rademachers (as defined in (19.8)); by Fact 19.8(ii)
and (iii), each Ri’s are 1/2-subgaussian, so Yi =

∑
i xiRi is too. And hence E[etY

2
i ] ≤ 1√

1−2t for

{−1,+1}-random variables as well. And now doing the same calculations as for the Gaussian case,
from Section 1.5.2, we get that the Rademacher matrix also has the JL property!

Note that the Rademacher JL matrix A now just requires us to pick kD = O(Dε−2 log δ−1) random
bits (instead of kD random Gaussians); also, there are fewer precision issues to worry about. One
can consider other distributions to stick into the matrix A—all you need to show is that Z has the
right mean, and that the entries are subgaussian.2

Analogous to subgaussian distributions, we also explore subexponential distributions a bit.

Definition 19.7. A random variable W is said to be subexponential with parameter ν if for all real

s, we have E[et(W−EW )] ≤ e
ν2t2

2 for |t| ≤ C
ν for an absolute constant C.

(An equivalent definition is Pr[W −EW ≥ λ] ≤ c1 e−c2λ for some suitable constants c1, c2.)

Fact 19.8. The following facts about subexponential random variables hold:

(i) The exponential distribution is subexponential.

(ii) If X is drawn from a subgaussian distribution, then the distribution of X2 is necessarily
subexponential.

(iii) The sum of subexponential random variables is a subexponential random variable.

In the proof of 19.2, if we pick entries of A from a Gaussian, then each (Ax)2i is distributed according
to a subexponential distribution and the distribution of ‖Ax‖22 is also subexponential.

On a final note, we call a distribution D over k × n matrices a distributional JL family if 19.2
is true when A is drawn from D.

Citations: The scheme of using Rademacher matrices instead of Gaussian matrices for JL was first
proposed in this paper by Dimitris Achlioptas. The idea of extending it to subgaussian distributions
appears in this paper of Indyk and Naor, and this paper of Matousek. The paper of Klartag and
Mendelson generalizes this even further.

Fast J-L: Do we really need to plug in non-zero values into every entry of the matrix A? What
if most of A is filled with zeroes? The first problem is that if x is a very sparse vector, then Ax
might be zero with high probability? Achlioptas showed that having a random two-thirds of the
entries of A being zero still works fine: the paper of Nir Ailon and Bernard Chazelle showed that
if you first hit x with a suitable matrix P which caused Px to be “well-spread-out” whp, and
then ‖APx‖ ≈ ‖x‖ would still hold for a much sparser A. Moreover, this P requires much less
randomless, and furthermore, the computations can be done faster too! There has been much work
on fast and sparse versions of JL: see, e.g., this SODA 11 paper of Ailon and Edo Liberty, and this
arxiv preprint by Daniel Kane and Jelani Nelson. Jelani Nelson also has some notes on the Fast
JL Transform.

3 Compressive Sensing

In an attempt to build a better machine to take MRI scans, we decrease the number of sensors.
Then, instead of the signal x we intended to obtain from the machine, we only have a small number

2If the E[etG
2

] ≤ 1√
1−at for a 6= 2, you will need to redo the proof from Section 1.5.2 since the linear terms in

(19.5) don’t cancel any more to give (19.6). See, e.g., Indyk and Naor or Matousek for details.
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of measurements of this signal. Can we hope to recover x from the measurements we made if we
make sparsity assumptions on x? We use the term r-sparse signal for a vector with at most r
nonzero entries.

Formally, x is a n-dimensional vector, and a measurement of x with respect to a vector a is a real
number given by 〈x, a〉. And the question we want to answer is how to reconstruct x with r nonzero
entries satisfying Ax = b if we are given k × n matrix A and n dimensional vector b.

Unfortunately, it turns out that the problem as formulated is NP-hard: but this is only assuming
A and b are contrived by an adversary. Our setting is a bit different. x is some r-sparse signal out
there that we want to determine. We have a handle over A and can choose it to be any matrix we
like, and we are provided with appropriate b = Ax, from which we attempt to reconstruct x.

Consider the following similar looking problem called the basis pursuit (BP) problem: minimize
‖x‖1 subject to Ax = b. This problem can be formulated as a linear problem as follows, and hence
can be efficiently solved.

Introduce n new variables y1, y2, . . . , yn under the constraints

−yi ≤ xi ≤ yi
Ax = b

and objective min
∑

i yi.

Definition 19.9. We call a matrix A as BP-exact if for all b = Ax such that x∗ is an r-sparse
solution, x∗ is also the unique solution to basis pursuit.

Theorem 19.10. [Donoho, Candes-Tao] If we pick A ∈ Rk×D from a distributional JL family
with k ≥ Ω

(
r log

(
D
r

))
, then with high probability A is BP-exact.

We note that the r log
(
D
r

)
comes from log

(
D
r

)
≈ log

(
D
r

)r
= r log

(
D
r

)
.

The last ingredient that one would use to show 19.10 is the Restricted Isometry Property (RIP) of
such a matrix A.

Definition 19.11. A matrix A is (t, ε)-RIP if for all unit vectors x with ‖x‖0 ≤ t, we have
‖Ax‖22 ∈ [1± ε].

Citations: See Chapter 4 of Ankur Moitra’s book for more on compressed sensing, sparse recovery
and basis pursuit. 19.10 comes from this paper by Emmanuel Candes and Terry Tao.
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