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1 Introduction

Consider n independent identically distributed (i.i.d.) random variables X, X, ..., X,,, each with
mean /. We are interested in the sum of these random variables S, := > X;. Note that E[S,,] = npu
by linearity of expectation. From the week law of large numbers we know that as n tends to infinity,
the random variable % converges in probability to the mean y, i.e. lim,, oo Pr[|S,/n—p| > € =0
for any positive constant e. In this lecture we are interested quantify the concentration of S,, around
its mean nu for some finite n. Equivalently, we are interested in upper bounding the probability
Pr[|S,, — nu| > A] for some positive A.

1.1 Central limit theorem

We say a sequence of random variables {X,} converges in distribution to a random variable Y
(written as X, LN Y)if Vu e R

n—oo

Pr(X, > u) Pr(Y > u)

Let N(0,1) denote the standard normal variable (“Gaussian variable”) with mean 0 and variance
1, i.e. its probability density function is given by \/% exp <—%2) The central limit theorem gives

us an idea on how far S, is from nu as n tends to infinity.

Theorem 18.1 (Central limit theorem). Let S,, denote the sum of n i.i.d. random variables, each
with mean (1 and variance o® < co. Then

Sn_n/Jd
_— N(0,1
o N (0.)

1.2 Markov’s inequality
Markov’s inequality is the most basic concentration bound.
Theorem 18.2 (Markov’s inequality). Let X be a non-negative random variable, then
E
PriX > )] < [)\]
Proof. Let f(z) be the probability density function of X.

E[X] = /000 zf(z)dr, since X >0

> /:o o f(z)dx

> )\/OOf(:c)dm = A\Pr[X > )]
A



1.3 Chebychev inequality

Theorem 18.3 (Chebychev’s inequality). For any random variable X with mean p and variance

o2, we have

Pr[Y > )\ <

However, note that Pr[Y > \?] = Pr[|X — u| > ] O

Remark: One can obtain stronger inequalities than the Chebychev’s inequality by taking higher
moments and applying the Markov’s inequality. In particular, we may define a random variable
Y = (X — u). Then for every positive integer ¢ we have Pr[|X — p| > ] = Pr[Y? > )\%] < %
Such inequalities are commonly called generalized Chebychev or moment inequality. The problem
with this approach is that calculating E[Y?] becomes tedious for large values of .

1.4 Examples

Let X1, Xo,..., X, beii.d. Bernoulli random variables with Pr[X; = 0] = 1—p and Pr[X; = 1] = p.
Let S, := E? X;. Then S, is distributed as a binomial random variable Bin(n,p). Note that
E[S,] = np and Var[S,] = np(1 — p).

1
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away from its mean § as Pr[S, — 5§ > fn] <

Example 1 (Bm(n )) Here Markov’s inequality gives a bound on the probability that S, is

. /Zi 25n = ﬁ However, Chebychev’s inequality
< n/4 1
=S 3202 T 4p%ne

gives a much tighter bound as Pr[|S, — §| > n]

Example 2 (Balls and Bins): Suppose we throw n balls uniformly at random into n bins. Then

for a fix bin ¢ the number of balls in it is distributed as a Bin(n, %) random variable. Markov’s

inequality gives a bound on the probability that S, is away from its mean 1 (i.e. the number of
1

balls in bin i deviates from its expected value) as Pr[S, —1 > A] < 1. However, Chebychev’s

inequality gives a much tighter bound as Pr[|S,, — 1| > A] < (17/\#
2 Chernoff bounds - Hoeffding’s inequality
Theorem 18.4 (Chernoff bounds - Hoeffding’s inequality). ! Let X1, Xo, ..., X, be n independent

random variables taking values in [0,1]. Let S, := X1 + Xo + ...+ Xy, wi := E[X}], and p =
E[S,] = >, E[X;]. Then for any 8 > 0 we have

Upper tail : Pr(S, > pn(1+ B)] <exp (— P ) (18.1)
: > < 218 )
L 1 _ (_ﬁ2ﬂ>
ower tail : Pr[S, < u(l —p)] <exp 3 (18.2)

'In his paper Chernoff derive the corresponding inequality in the case that X1, ..., X,, are i.i.d Bernoulli random
variables. Hoeffding gave the generalization where X1, ..., X, are independent random variables all taking values in
some bounded interval [a, b].



Before proving the above theorem, we consider its application for example 1 (Bin(n, %)) mentioned

in the previous section. The upper tail of the above theorem implies that Pr[S, — § > 57”] <
2
exp(—ﬁ zj:gz). Clearly this exponentially bound seems more prominent than the polynomial one

achieved by Markov’s or Chebychev’s inequality.
Proof. We only prove Eq. (18.1). The proof for Eq. (18.2) is similar.
Pr[S, > u(1+ B)] = Pr[e!Sr > 1+A] vt > 0

E[c"] . . _
S Ctu(itp) (using Markov’s inequality)
E tX;
- % (using independence)
e

Assumption: For now we assume that all X; € {0,1}, i.e. are Bernoulli random variables. We
will later show how to remove this assumption.

Now using the above assumption we get E[e'Xi] = 1 + p;(e! — 1) < exp(ui(e® — 1)). Hence, we get

E tX;
Pr[S, > u(1+ f)] < Hetm[lim]

< Hexp(pi(e’ —1))

— etn(1+5)

= exp(u(e’ —1) —tu(1 + B))
Since the above expression holds for all positive ¢ and we wish to minimize it. By setting its
derivative w.r.t. t to zero we obtain ¢t = In(1 + ). This gives

e? a
Pr[S, > p(l1+5)] < (W) (18.3)

Now observe that for x > 0 we have that < In(1 + z). Hence, we can simplify the above

x
1+3
expression for x = [ to obtain

2
Pr(S, > (1 + B)] < exp (—fjﬂ)

Removing the assumption X; € {0,1}: For each ¢ in [n], we define a new Bernoulli random
variable Y; which take value 0 with probability 1 — u; and value 1 with probability ;. You can
think of Y; as being formed by starting with probability density function of X; and then moving
the mass from every point in (0,1) to the endpoints 0,1 in a way that preserve the mean. Now
note that the function eX¢ is convex for every value of ¢+ > 0. Thus we have E[e/Xi] < Ele!Y] =
1+ pi(el — 1) < exp(ui(e! — 1)), and the above proof goes through even for the general case where
x € [0,1]. In the case that Xi,..., X,, are n independent variables that take values in [a,b] we
can define Y; = )gi:aa. Now Y1, ..., Y, are independent random variables that take values in [0, 1].
Furthermore with S, = Y, = 1"X; and S}, = > ; Y; we have that (b — a)S,, + na = S},. Hence
Pr(S, > (1+ B)u) = Pr[S], > ((1 + B)u — na)/(b — a)]. The latest probability can be calculated
using Hoeffding’s inequality. d

Example 3 (Balls and Bins): With the same setting as in Example 2 we now want to bound the
maximum number of balls falling into a bin. The expected number of balls into any bin is 1. Thus
Chernoff bounds imply that the probability that:

o 52>
Pr|Ball b >1+p8] < —
r[Balls in bin i > ﬁ]_exp( 51 5
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If we ensure that the above probability is less than # (i.e. 8= 0O(logn)) then even if we take union
bound over all the bins, we get that the probability that a bin receives at least 1+ 5 balls is at most
%. Hence, we have with high probability that no bin receives more than O(log n) balls. A better

bound for this problem is (1+ o(1)) (1 52%0;1), which can be obtained by using the stronger bound

given in Eq. (18.3). Furthermore this bound is tight in the sense that w.h.p. there is a bin with
load (1 + 0(1))log)ﬁ)gn [4]. This fact has two immediate implications. First Eq. (18.3) found in the
proof of Hoeffding’s inequality can is stronger than Hoeffding’s inequality. Second any inequality
of the form Pr[S,, > u(1 + B)] < exp(—CpB?u) for some constant C' > 0 does not hold. That is

because any such inequality would imply that the maximum load would be O(log0'5 n).

Remark: Hoeffding’s inequality also holds if the random variables are not independent but nega-
tively correlated, i.e. if some variables are ‘high’ then it makes more likely for the other variables
to be ‘low’. Formally X; and X; are negatively correlated if for all disjoint sets A, B and for all
monotone increasing functions f, g, we have

E[f(X; i€ A)g(X,: j € B) <BIf(X;:i € A)Elg(X, : j € B)]

3 Other concentration bounds

Theorem 18.5 (Bernstein’s inequality [5]). Consider n independent random variables X1, Xo, ..., X,
with | X; — E[X;]| < b for each i. Let S, := X1+ Xo+ ...+ X,,, and let S,, have mean p variance

o%. Then for any B > 0 we have

, B*u
U tail : Pr[S, > u(1 < _—
pper tai r[Sn > p( +ﬁ)]_emp< 2071 1 260/3
Theorem 18.6 (McDiarmid’s inequality [5]). Consider n independent random variables X1, Xs, ..., X,
with X; taking values in a set A; for each i. Suppose a real valued function f is defined on [] A;
satisfying | f(x) — f(2')] < ¢; whenever x and x' differ only in the ith coordinate. Let p be the
expected value of the random variable f(X). Then for any non-negative 5 we have

. 2,“’2/82
Upper tail : Pr(f(X)>pu(1+p8)] <exp|— > 2
i G
. 2/1/262
Lower tail : Prif(X) <p(l-p0)] <exp ]
i G
Theorem 18.7 (Philips and Nelson [6] show moment bounds are tighter than Chernoff-Hoeffding
bounds). Consider n independent random variables X1, Xo, ..., Xy, each with mean 0. Let S, =
> X;. Then
. E[X*] . _E[eX]
> < <
PriSn 2 A < mip =3 < ol o
Theorem 18.8 (Matrix Chernoff bounds). Consider n independent symmetric matrices X1, Xa, ..., Xy,

of dimension d. Moreover, X; = 0 and I = X; for each i, i.e. eigenvalues are between O and 1. Let
Hmin = Amm(z E[X’L]) and Hmax = )\maz(z E[X’L]); then

Pr e (396) 2 e 4] < eap (5

2lmaz +

In some applications the random variables are not independent, but have limited influence on the
overall function. We can still give concentration bounds if the random variables form a martingale.
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Theorem 18.9 (Hoeffding-Azuma inequality [5]). Let ¢, ca,. .., ¢, ben constants, and let Y1,Ys, ..., Y,
be a martingale difference sequence with |Y;| < ¢; for each i. Then for any t >0

3wl <2em (~gers)

i=1
Remark:McDiarmid’s iunequality and Azuma-Hoeffding Inequality can be used to bound functions
of X1, ..., X, other than their sum.

Pr
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