
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #17: Interior Point Methods March 4, 2017
Lecturer: Anupam Gupta Scribe: Guru Guruganesh, Nicholas Sieger

17.1 Ellipsoid Wrap-Up

17.1.1 Solving LPs with Ellipsoid

In the previous lecture, we showed that the Ellipsoid Algorithm can determine whether a full-
dimensional convex polytope K ⊆ Rn is nonempty, but we still had to show how to actually solve
an LP with Ellipsoid. That takes a bit more work and leads to the following theorem

Theorem 17.1. Given an LP {min cᵀx : Ax ≤ b} with representation size L := 〈A〉 + 〈b〉 + 〈c〉
Ellipsoid can find a basic feasible solution, if one exists, in time poly(L, n).

In lieu of the full (and lengthy) proof, we present a proof sketch. Set K = {x ∈ Rn : Ax ≤ b},
and define Kβ = {x ∈ K : cᵀx ≤ β} for β ∈ Q. Now, we binary search over β using the ellipsoid
algorithm to determine whether Kβ is nonempty. This raises three big problems:

1. Binary search over Q may not terminate, and even if it does terminate, it might produce
exponential-size numbers

2. The Ellipsoid Algorithm needs a starting radius R such that Kβ ⊆ E0, where E0 is an initial
ellipsoid.

3. The Ellipsoid Algorithm also needs Kβ to contain a ball of radius r entirely within it.

For the first issue, it can be shown that the optimal value of β only uses numbers of size poly(L)
(see Homework 4). Once 〈β〉 gets large enough, we find the closest point whose bit-size is bounded
by poly(L) and snap to it. Finding a bounded bit-size approximation to a point in high-dimensions
is non-trivial. In one-dimension, we can use the theory of continued fractions to find such a point.
These issues are addressed in detail in [GLS88].

For the second issue, we know that the optimal solution will have its size bounded by poly(L).
Hence, we take a ball of size 2poly(L) as our starting ellipsoid.

The third problem is much harder to solve. One immediate requirement of this condition is that
K must be full dimensional (in order to fit a tiny ball inside it). However, many LPs that we want
to solve are not full dimensional, so we need to ”fatten” K. In two dimensions, suppose K was a
line-segment. In this case, it is clear that we could fatten it up by adding a small ball to each point,
(the resulting shape would look like a small cylinder). In higher dimensions, this becomes very
tricky. Much of the details of this procedure are worked out in [GLS88]. The book also contains
many details on the relationship between seperation and optimizatoin.

17.1.2 Strong Separation Oracles

The Ellipsoid algorithm is extremely versatile because it does not need a description of a convex
body but simple a (strong) seperation oracle.

1

Definition 17.2. Given a polytope K, a strong separation oracle (SSO) for K is a function fK(x)
with the following property. For any x ∈ Rn, fK(x) either reports that x ∈ K or returns a
hyperplane (a, b) such that

aᵀy ≤ b ∀y ∈ K
aᵀx > b

So, if we can implement a poly-time SSO for an LP with an exponential number of constraints, the
ellipsoid algorithm can solve this LP in polynomial time!

Example 17.3. Recall the perfect matching polytope for general (non-bipartite) graphs G = (V,E)

KPM = x ∈ R|E| s.t.


∀v ∈ V,

∑
u∈N(v) = 1 and

∀S s.t. |S| ≡2 1,
∑

e∈∂(S) xe ≥ 1 and

∀e ∈ E, xe ≥ 0

This polytope has an exponential number of constraints, yet we can optimize over it using the
ellipsoid algorithm by exhibiting a SSO. We present a proof sketch here, and refer to homework 4
for the details.

Given a potential solution x, we can easily check the first constraint. Suppose some odd set S ⊂ V
with

∑
e∈∂(S) xuv < 1. The cut (S, V/S) has value < 1, and we can run Min-Cut to find such an

S. Note that Min-Cut does not guarantee that |S| is odd. So there is a bit more work to be done,
but this is the basic idea.

17.2 Interior Point Methods

The ellipsoid algorithm proved to be much worse than the simplex method in practice despite having
theoretical guarantees. Progress was stalled until 1984, when Narendra Karmakar introduced his
interior point algorithm [Kar84]. Karmakar showed it ran in weakly polynomial time. This led to
a flurry of work which produced better interior point methods. Today interior point methods are
used in practice on large LPs and are the method of choice for certain convex programs.

We present an algorithm from Matousek and Gaertner’s [GM07] and Stephen Wright’s [Wri97]
books, which has a very elegant derivation.

17.2.1 Barrier Functions

Consider a general LP with P = {min cᵀx : Ax ≥ b}, which we assume is bounded. Instead of
viewing this system as a linear program, we can think of it as a nonlinear optimization problem
with this objective function

fP (x) = min
x∈Rn

cᵀx+ 1P (x)

1P (x) =

{
∞ x /∈ P
0 x ∈ P

To actually solve this problem, we will need to take gradients of fP (x), and these gradients are
discontinuous. So we will replace 1P (x) with a barrier function

2

Definition 17.4. Given a convex body P ⊆ Rn, and x ∈ P , let y be a point on the boundary
of P . A barrier function defined on the interior of the polytope P bP : int(P) → R+ satisfies the
following

x→ y =⇒ bP (x)→∞

Think of barrier functions as a “smooth” version of the indicator function 1P (x).

In our setting of an LP with constraints aix ≥ bi, we will take the barrier function bP (x) =∑m
i=1 log

(
1

aᵀi x−bi

)
. Since we assumed our LP was bounded, bP (x)→∞ only when x gets closer to

the boundary.

Remark 17.5. As we will see, we will need the gradient of the barrier function and computing the
gradient of the universal barrier function is essentially as hard as solving an LP. There are many
different choices for barrier functions some of them allow fewer iterations (which can be expensive)
while others require more iterations but faster computation per iteration. The current barrier
function (known as the log barrier function) depends explicitly on the constraints of the polytope.
Hence, repeating a constraint many times can force the algorithm to take many iterations. In
a breakthrough, Nesterov and Nemirovski [NN94] showed the existance of a “universal barrier”
function which only depends on the polytope. Recently Lee and Sidford [LS14] showed how to
speed up this computation resulting in the fastest known algorithms for linear programming.

However, we do not want bP (x) to have too much influence on our solution, so we change our
objective function once again.

fη(x) = cᵀx+ η

(
m∑
i=1

log

(
1

aᵀi x− bi

))
xη = argminxfη(x)

The goal of introducing η is to control how close we are to x∗; as η → 0 our algorithm will choose
xs which get closer and closer to x∗. Alternatively, if we increase η, the barrier function dominates,
and we find points closer and closer to the center of P . As η →∞, the xη → xc which is known as
the analytic center of P with respect to bP .

At a high level, this interior point method does the following.

1. Pick some starting point xη0

2. Until η is sufficiently small,

(a) Move to a new xη(1−ε) while staying within P

(b) Set η to η(1− ε)

Once η is small enough, we can apply the same bit representation arguments as we did with the
ellipsoid algorithm to find x∗. All that remains is to determine how we move from xη to xη(1−ε).

Remark 17.6. There is also the detail of how we choose an x0. Ideally, x0 would be close to P ’s
center of gravity, but we have already seen that is hard to compute. However, we can run the
interior point algorithm ”in reverse”.

The basic idea is that since an interior point method progressively finds a vertex, if we start with
a vertex and increase η we will move closer and closer to the center of P . Since one definition of a

3

vertex of P is a point which satisfies n constraints at equality, we can simply solve a linear system
to find a vertex, and then increase η until we are satisfied the final point. Then this point is our x0.
For the remainder of these notes, we will simply assume that we can find an appropriate starting
point.

17.2.2 Lagrange Multipliers

To ease the analysis, we will change our LP slightly to {minx c
ᵀx : Ax = b, x ≥ 0}. So we are

finding the minimizer of the following function as η → 0

lim
η→0

min
x
fη(x) = cᵀx+ η

(
m∑
i=1

log

(
1

aᵀi x− bi

))
However, the gradient of f(x, η) gives us no control over how the influence of each constraint. It
would be nice if we could instead minimize the following objective function over {x ∈ Rn : Ax = b}

lim
η→0

min
x:Ax=b

fη(x) = cᵀx+ η
n∑
i=1

ln

(
1

xi

)
Now we will transform this into an unconditioned minimization problem using Lagrange Multipliers.
(Lagrange Multipliers can be thought of as a penalty for violating constraints. For a more detailed
explanation, see Wikipedia, [BV04].)

lim
η→0

min
x,y

fη(x, y) = cᵀx+ η
n∑
i=1

ln

(
1

xi

)
−

m∑
j=1

yi(a
ᵀ
i x− bi)

= cᵀ + η
n∑
i=1

ln

(
1

xi

)
− yᵀ(Ax− b) (17.1)

At the minimizer, ∇xfη(x, y) and ∇yfη(x, y) are 0.

∇xfη(x, y) = cᵀ − η 1

x
− yᵀA

∇yfη(x, y) = Ax− b

Define s = η(1
x1
, 1
x2
, . . . , 1

xn
), and setting the above to 0, we get

Aᵀy + s = c (17.2)

Ax = b (17.3)

∀i ∈ [n] xisi = η (17.4)

We have reduced the problem of minimizing fη(x, y) to find the solution of the above non-linear
system.

Fact 17.7. If (x, y, s) satisfy Equations 17.2, 17.3, 17.4, then x = x∗

Proof.
cᵀx = (yᵀA+ sᵀ)x = yᵀAx+ sᵀx = yᵀb+ 0

Since (17.2) is simply the dual LP, we can conclude that x is an optimal solution by strong duality.

Unfortunately, (17.4) prevents us from easily solving this system exactly.

4

https://en.wikipedia.org/wiki/Lagrange_multiplier#Interpretation_of_the_Lagrange_multipliers

17.2.3 The Final Algorithm

Since we cannot solve (17.4) exactly, we will approximate it. For x, y ∈ Rn we use the notation
x ◦ y = (x1 · y1, x2 · y2, . . . , xn · yn) and define 1 to the all-ones vector. We will then solve the
following system

Aᵀy + s = c

Ax = b

‖x ◦ s− η1‖2 ≤ 0.4η (17.5)

Note that as η → 0, x ◦ s→ 0. To solve this system, we do the following

1. Start with s0, x0 > 0 and y0, η0 satisfying

Aᵀy0 + s0 = c, Ax0 = b

η0 =
〈x0, s0〉
n

, ‖x0 ◦ s0 − η01‖2 ≤ 0.4η0

2. At each time t, we find ∆x,∆y,∆s such that

A∆x = 0 (17.6)

Aᵀ∆y + ∆s = 0 (17.7)

(st ◦∆x) + (xt ◦∆s) = −(xt ◦ st) + ηt1 (17.8)

Then set xt+1 = xt + ∆x, yt+1 = yt + ∆y, st+1 = st + ∆s. Finally, set

ηt+1 =

(
1− 0.4√

n

)
ηt

To show that this algorithm produces a feasible solution, we will show the following claims for
all t. We provide a sketch of the overall proof here and postpone the proofs of each claim to the
appendix.

1. Axt = b Aᵀyt + st = c This holds by our linear system solver.

2. ‖xt ◦ st − ηt1‖2 ≤ 0.4ηt

3. After T = O(
√
nL) steps, ηT ≤ 2−Θ(L)

4. 〈∆x,∆s〉 = 0

5. ηt = 〈xt,st〉
n

6. After T =
√
nL steps, x can be rounded to x∗

Claims (1) and (2) show that we always maintain a feasible solution, and (3) shows that after
T = O(

√
nL) steps, ηT is as small of a number as we can represent in L bits. Thus, if we knew

that the duality gap cᵀxT − bᵀyT is at most ηT , we can round xT to x∗. However, we can observe
the following by our linear system solver

duality gap = cᵀxT − bᵀyT = cᵀxT − (AxT)ᵀyT = 〈(cᵀ −AᵀyT), xT 〉 = 〈sT , xT 〉

5

So if we knew that ηT ∝ 〈sT , xT 〉, we could bound the duality gap. This is given by (5). To show
(5), we can use the fact that 〈x, y〉 = 〈1, x ◦ y〉, and then apply the update rules for xt, st. This
produces 〈xt+1, ss+1〉 = 〈1, xt ◦ st + (xt ◦∆st) + (st ◦∆xt) + (∆xt ◦∆st)〉 which we could simplify
if 〈1,∆xt ◦∆st〉 = 0. That problem is handled by a simple technical lemma (3). Therefore, we can
round xT to x∗ after O(

√
nL) steps.

A Proof of claim 2

Proof. The proof is by induction on t. By construction, the claim holds for t = 0, so we may assume
the claim holds for t− 1 and prove it for t.

|xt ◦ st − ηt1‖2 = |(xt−1 + ∆x) ◦ (st−1 + ∆s)− ηt1‖2
= ‖(xt−1 ◦ st−1 − ηt1) + (st−1 ◦∆x+ xt−1 ◦∆s) + ∆x ◦∆s‖2
= ‖∆x ◦∆s‖2

Set s = st−1, x = xt−1 Define D = diag
(√

xi
si

)
, and note that

‖a ◦ b‖2 ≤
1

23/2
‖a+ b‖22

Then,

‖∆x ◦∆s‖2 = ‖(D−1∆x) ◦ (D∆s)‖2

≤ 1

23/2
‖D−1∆x+D∆s‖2

=
1

23/2

∑
i

xi
si

(∆xi)
2 +

si
xi

(∆si)
2

=
1

23/2

∑
i

(s2
i∆xi)

2 + (x2
i∆si)

2

sixi

≤ 1

23/2

‖x ◦∆s+ s ◦∆x‖2

mini xisi

=
1

23/2

‖ηt1− x ◦ s‖2

mini xisi

mini xisi is maximized if xisi = xjsj for every i, j. So if we consider a vector which maximizes
mini xisi and apply the inductive hypothesis,

(min
i
xisi − ηt−1)‖1‖ ≤ 0.4ηt−1

min
i
xisi ≥

(
1− 0.4√

n

)
ηt−1

Let σ =
(

1− 0.4√
n

)
. Then,

‖ηt1− x ◦ s‖2 = ‖(x ◦ s− ηt−11) + (1− σ)ηt−11‖2

= ‖(x ◦ s− ηt−11)‖2 + 2〈(x ◦ s− ηt−11), (1− σ)ηt−11〉+ ‖(1− σ)ηt−11‖2

6

Let’s look closer at the middle term

2〈(x ◦ s− ηt−11), (1− σ)ηt−11〉 = 2(1− σ)ηt−1(〈x ◦ s, 1〉 − 〈ηt−11, 1〉)

By (5)

= 2(1− σ)ηt−1(〈x, s〉 − 〈x, s〉
n
〈1, 1〉)

= 2(1− σ)ηt−1(〈x, s〉 − 〈x, s〉)
= 0

Thus we have

‖ηt1− x ◦ s‖2 = ‖(x ◦ s− ηt−11)‖2 + ‖(1− σ)ηt−11‖2

By the inductive hypothesis

≤ 0.42η2
t−1 + (1− σ)2η2

t−1n

= 0.42η2
t−1 +

(
0.4√
n

)2

η2
t−1n

= 2(0.4)2η2
t−1

Putting everything together gives us

|xt ◦ st − ηt1‖2 ≤
2(0.4)2η2

t−1

23/2σηt−1

=
(0.4)√

2σ2
0.4ηt

It can be easily seen that the fraction is strictly less thatn 1

< 0.4ηt

B Proof of Claim 3

Proof. By the second step of the algorithm, ηT =
(

1− 0.4√
n

)ᵀ
η0. Since η0 ≤ 2L, there is some

constant K such that

ηT

(
1− ≤ 0.4√

n

)K√nL
2L ≤ exp

{
−0.4K

√
nL√

n

}
2L = 2−Θ(L)

C Proof of Claim 4

Proof.
〈∆x,∆s〉 = −〈Aᵀ∆y,∆x〉 = −∆yᵀA∆x = 0

7

D Proof of Claim 5

Proof.

〈xt, st〉 = 〈1, xt ◦ st〉
= 〈1, (xt−1 + ∆x) ◦ (st−1 + ∆s)〉
= 〈1, (xt−1 ◦ st−1) + (st−1 ◦∆x) + (xt−1 ◦∆s) + (∆x ◦∆s)〉
= 〈1, ηt1 + (∆x ◦∆s)

= ηtn+ 〈1,∆x ◦∆s〉
= ηtn+ 〈∆x,∆s〉
= ηtn By (4)

E Proof of Claim 6

Proof. By (5),

ηT =
〈xT , sT 〉

n
=
〈xT , c−AᵀyT 〉

n
=

1

n
(cᵀxT − bᵀyT) =

1

n
(duality gap)

By (3), ηT ≤ 2−Θ(L), so xT , yT are nearly optimal with an error of 2−Θ(L). Thus we can round xT
to x∗.

References

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. 17.2.2

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization, volume 2. Springer Science & Business Media, 1988. 17.1.1

[GM07] Bernd Gärtner and Jǐŕı Matoušek. Understanding and using linear programming. Univer-
sitext. Springer, Berlin, 2007. 17.2

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984. 17.2

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in o(sqrt(rank)) iterations and faster algorithms for maximum flow. In
Foundations of Computer Science (FOCS), pages 424–433. IEEE, 2014. 17.5

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming. SIAM, 1994. 17.5

[Wri97] Stephen J. Wright. Primal-dual Interior-point Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1997. 17.2

8

	Ellipsoid Wrap-Up
	Solving LPs with Ellipsoid
	Strong Separation Oracles

	Interior Point Methods
	Barrier Functions
	Lagrange Multipliers
	The Final Algorithm

	Proof of claim 2
	Proof of Claim 3
	Proof of Claim 4
	Proof of Claim 5
	Proof of Claim 6

