
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #17: The Ellipsoid Algorithm March 3, 2017
Lecturer: Anupam Gupta Scribe: Benjamin Berg, David K. Isenberg

In this lecture, we discuss some polynomial-time algorithms for Linear Programming problems
(along with some that are not in polynomial time). In particular, we touch on several LP algorithms,
and examine in-depth the Center-of-Gravity and Ellipsoid algorithms.

1 LP Approaches

Before we give a high-level idea of how Ellipsoid works, let us just mention the main approaches to
solve LPs. For now, let K = {x | Ax ≥ b} ⊆ Rn, and we want to minimize cᵀx such that x ∈ K.

Simplex: This is the first algorithm for solving LPs that most of us see. Developed by George
Dantzig in 1947, at a high level it starts at a vertex of the polyhedron K, and moves from
vertex to vertex without decreasing the objective function value, until it reaches an optimal
vertex. (The convexity of K ensures that such a sequence of steps is possible.) The strategy
to choose the next vertex is called the pivot rule. Unfortunately, for most pivot rules people
have proposed, there are examples on which the following the pivot rule takes exponential
number of steps. One early description of the method appears in [DOW55].

Ellipsoid: The first polynomial-time algorithm for LP solving proposed by Khachiyan [Kha79];
this is discussed in detail in Section 3. Check out this historical survey by Bland, Goldfarb
and Todd.

Interior Point: The second approach to get a polynomial-time algorithm for LPs; proposed by
Karmarkar [Kar84]. This is widely used in practice, and has many nice theoretical properties
too. We will discuss this in a later lecture if there is time and interest.

Geometric Algorithms for LPs: These approaches are geared towards solving LPs fast when
the number of dimensions is small. Suppose we let d denote the number of dimensions and
m be the number of constraints, these algorithms often allow a poor runtime in d, at the
expense of getting a good dependence on m. As an example, this algorithm of Seidel’s has a
runtime of O(m · d!) = O(m · dd/2) [Sei91]. A different algorithm of Clarkson has a runtime
of O(d2m) + dO(d)O(logm)O(log d). Perhaps the best of these algorithms is one by Matousek,
Sharir, and Welzl [MSW96], which has a runtime of

O(d2m) + eO(
√
d log d).

For details and references, see this survey by Dyer, Megiddo, and Welzl.

Center of Gravity Algorithm: This is discussed in detail in Section 2.

2 The Center-of-Gravity Algorithm

In this section, we discuss the center-of-gravity algorithm in the context of constrained convex
minimization. Besides being interesting in its own right, I find it a good lead-in to Ellipsoid, since
it gives some intuition about high-dimensional bodies and their volumes.

1

http://www.math.uwaterloo.ca/~cswamy/courses/co759/approx-material/ellipsoid-survey.pdf
http://www.eecs.berkeley.edu/~jrs/meshpapers/SeidelLP.pdf
http://www.inf.ethz.ch/personal/emo/PublFiles/LpSurvey03.pdf

Given a convex body K ⊆ Rn, and a convex function f : Rn → R, we want to approximately
minimize f(x) over x ∈ K. First, recall that the center of gravity of a set K is defined as the point
c ∈ Rn such that

c :=

∫
x∈K x dx

vol(K)
=

∫
x∈K x dx∫
x∈K dx

,

where vol(K) is the volume of the set K. 1

The following lemma captures the one fact about the center-of-gravity that we use in our algorithm.

Lemma 17.1 (Grünbaum [Grü60]). For any convex set K ∈ Rn with a center of gravity c ∈ Rn,
and any halfspace H = {x | aᵀ(x− c) ≥ 0} passing through c,

1

e
≤ vol(K ∩H)

vol(K)
≤
(

1− 1

e

)
.

2.1 The Algorithm

In 1965, Levin [Lev65] and Newman [New65] independently (on opposite sides of the iron curtain)
proposed the following algorithm.

Algorithm 1 Center-of-Gravity(K, f, T)

K0 ← K
for t = 0, 1, . . . T do

at step t, let ct = the center of gravity of Kt

calculate the gradient ∇f(ct)
Kt+1 = Kt ∩ {x | 〈∇f(ct), x− ct〉 ≤ 0}

end for
return x̂ := arg mint∈{0,1,...,T} f(ct)

Kε

K

• c0
∇f(c0)

•
c1

∇f(c1)

•
c2

∇f(c2)

Figure 17.1: Sample execution of first three steps of the Center-of-Gravity algorithm.

1This is the natural analog of the center of gravity of n points x1, x2, . . . , xN , which is defined as
∑

i xi

N
. See this

blog post for a discussion about the center-of-gravity of an arbitrary measure µ defined over Rn.

2

2.2 Analysis of Center of Gravity

Theorem 17.2. Let B ≥ 0 such that f : K → [−B,B]. If x̂ is the result of the algorithm, and
x∗ = arg minx∈K f(x), then

f(x̂)− f(x∗) ≤ 2B

(
1− 1

e

)T
n

≤ 2B · exp(−T/3n).

Hence, for any δ ≤ 1, f(x̂)− f(x∗) ≤ δ as long as T ≥ 3n ln 2B
δ .

Proof. By Grünbaum’s lemma, it immediately follows that at any time t, vol(Kt) ≤ vol(K)·(1− 1
e)t.

Now for some ε ≤ 1, define the body Kε = {(1 − ε)x∗ + εx | x ∈ K}. The following facts are
immediate:

• vol(Kε) = εn · vol(K).

• The value of f on any point y = (1− ε)x∗ + εx ∈ Kε is

f(y) = f((1− ε)x∗ + εx) ≤ (1− ε)f(x∗) + εf(x) ≤ (1− ε)f(x∗) + εB

≤ f(x∗) + ε(B − f(x∗)) ≤ f(x∗) + 2εB.

• Consider step t such that Kε ⊆ Kt but Kε 6⊆ Kt+1. Let y ∈ Kε ∩ (Kt \Kt+1) be a point that
is “cut off”. Then f(ct) < f(y). Indeed,

f(y) ≥ f(ct) + 〈∇f(ct), y − ct〉

and 〈∇f(ct), y − ct〉 > 0 since y ∈ Kt \Kt+1.

If we define ε := (1 − 1/e)T/n, then after T steps either cT ∈ Kε, or some point of Kε has been
cut off at some step t. In either case, we know that some center in {ct}t∈[T] achieves f(c) ≤ 2Bε,

which gives us the first claim. The second claim follows by substituting T ≥ 3n ln 2B
δ into the first

claim, and simplifying.

2.3 Comments

Observe that if we want an error of δ for minimizing a convex function, the number of steps
T depends on log(1/δ); compare this to gradient descent which requires 1/δ2 steps. This is an
exponentally better convergence rate! A useful way to think of this: improving the precision from
δ to δ/2 is like getting one more bit of precision. Getting one more bit of precision in gradient
descent requires quadrupling the number of steps, but in this algorithm it requires increasing by an
additive constant. This is why such a convergence depending as log 1/δ is called linear convergence
in the convex optimization literature.

One downside with this approach: now the number of steps explictly depends on the number of
dimensions n. Contrast with gradient descent, where the number of steps depended on other factors
(a bound on the gradient, the diameter of the polytope), but not explicitly on the dimension.

Finally, there’s the all-important question: how do you compute the center of gravity? This is a
difficult problem—it is #P-hard, which means it is at least as hard as counting the number of
satisfying assignments to a SAT instance. In 2002, Bertsimas and Vempala [BV04] suggested a
way to find approximate centers-of-gravity using sampling random points from convex polytopes
(which in turn was based on random walks).

3

3 An Overview of the Ellipsoid Algorithm

3.1 Theorems about the Ellipsoid Algorithm

The Ellipsoid algorithm is usually attributed to N. Shor [SZ71]; the fact that this algorithm gives
a polynomial-time algorithm for linear programming was a breakthrough result due to Khachiyan
[Kha80], and was front page news at the time. Let us survey some theorem statements that will
be most useful to design algorithms. A great source of information about this algorithm is the
Gröschel-Lovasz-Schrijver book [GLS88].

The second-most important theorem about the Ellipsoid algorithm is the following. (Recall from
Lecture 10 that b.f.s. stands for basic feasible solution.) In this lecture, 〈A〉, 〈b〉, 〈c〉 denote the
number of bits required to represent of A, b, c respectively.

Theorem 17.3. Given an LP min{cᵀx | Ax ≥ b}, the Ellipsoid algorithm produces an optimal
b.f.s. for the LP, in time polynomial in 〈A〉, 〈b〉, 〈c〉.

One may ask: is the large runtime just because the numbers in A, b, c may be very large, and hence
just doing basic arithmetic on these numbers may require large amounts of time. Unfortunately,
that is not the case. Even if we count the number of arithmetic operations we need to perform, the
Ellipsoid algorithm performs poly(max(〈A〉, 〈b〉, 〈c〉)) operations. A stronger guarantee would have
been that the number of arithmetic operations is poly(m,n) (where the matrix A ∈ Qm×n—such
an algorithm would be called a strongly polynomial-time algorithm. This remains a major open
question.

3.1.1 Separation Implies Optimization

In order to talk about the Ellipsoid algorithm, as well as to state the next (and most important)
theorem about Ellipsoid, we need a definition.

Definition 17.4. Strong Separation Oracle For a convex set K ⊆ Rn, a strong separation oracle
for K is an algorithm that takes a point x̂ ∈ Rn and correctly outputs one of:

(i) “x̂ ∈ K”, or

(ii) “x̂ 6∈ K”, as well as a ∈ Rn, b ∈ R such that K ⊆ {x | aᵀx ≤ b} but aᵀx̂ > b.

In case (ii), the hyperplane aᵀx = b is a “separating hyperplane” between x and K. Figure 17.2
shows a two-dimensional example of the output of a strong separation oracle in the failure case.

Theorem 17.5. Given any finite LP min{cᵀx | Ax ≥ b} with x ∈ Rn, and given access to a strong
separation oracle for K = {x | Ax ≥ b}, the Ellipsoid algorithm produces a b.f.s. for the LP in time
poly(n,maxi〈ai〉,maxi〈bi〉, 〈c〉).

Note that there is no dependence on the number of constraints in the LP; as long as each constraint
has a reasonble bit complexity, and we can define a separation oracle for the polytope, we can solve
the LP. This is often summarized by saying: “separation =⇒ optimization”.

Let us give two examples of exponential-sized LPs, for which we can give a separation oracles, and
hence optimize over them.

4

http://www.nytimes.com/1979/11/07/archives/a-soviet-discovery-rocks-world-of-mathematics-russians-surprise.html
http://www.cs.cmu.edu/~anupamg/advanced/lectures/lecture10.pdf#page=2

K
x̂
•

Separating Hyperplane

Figure 17.2: Example of separating hyperplanes

3.1.2 Exponential-Sized LPs

Given a directed graph G = (V,E) with edge weights we ∈ R, a special vertex r ∈ V , we can define
the following LP:

min
∑

wexe

Subject to:
∑
e∈∂+S

xe ≥ 1 ∀S ⊆ V s.t. r 6∈ S, S 6= ∅

1 ≥ xe ≥ 0 ∀e ∈ E

A little thought shows that if we consider any arborescence T in the digraph, its characteristic
vector χT ∈ {0, 1}|E| is a feasible solution for this LP: each set not containing the root must have
an arc leaving the set.

How do we solve this LP? It has an exponential number of constraints! We can solve it in
poly(|V |, |E|) time using Ellipsoid as long as we can implement a strong separation oracle in poly-
nomial time. I.e., given a point x ∈ R|E|, we need to figure out if x satisfies all the constraints. It
is easy to check if xe ∈ [0, 1] for all edges e (since there are only |E| many edges), but what about
the 2n−1 − 1 “cut” constraints? Consider the graph H which has the same nodes and arcs as G,
where arc capacities are xe. For each node v 6= r, find the minimum v-r cut in H. There exists
some violated set S if and only if the minimum cut from any node in S to r has cut value strictly
less than 1. Hence we can find a violated cut using n− 1 min-cut computations. 2

Here’s another (famous) example: Given a general undirected graph G = (V,E), consider the

2BTW, using ideas from Lecture #3, we can show that the vertices of this polytope are precisely all the arbores-
cences in G, and hence using Edmonds’ algorithm to find the min-cost arborescence is another way of solving this
LP!

5

following polytope with a variable xe corresponding to the edges of the graph.

max
∑

wexe

Subject to:
∑
e∈∂v

xe ≤ 1 ∀v ∈ V

∑
e∈(S2)

xe ≤
⌊
|S|
2

⌋
∀S ⊆ V

x ≥ 0

A little thought shows that if we consider any matching M in the graph, its characteristic vector
χM ∈ {0, 1}|E| is a feasible solution for this LP. Again, the LP has an exponential number of
constraints. Regardless, Theorem 17.5 says that we can solve this LP in time poly(n), as long as
we can give a poly-time separation oracle for the polytope. I.e., given a point x̂ ∈ R|E|, and suppose
x̂ 6∈ K, then we need to output some separating hyperplane. This time it’s a little non-trivial but
can be done this way, even though the number of constraints is exponential.

Suppose, instead of minimizing a convex function f over a convex set K, we just wanted to find
some point x ∈ K, or to report that K was the empty set. This is a feasibility problem, and
is a simpler problem than optimization. In fact, the GLS book [GLS88] shows that feasibility
is not much easier than optimization: under certain conditions the two problems are essentially
equivalent.

3.2 Ellipsoid for Feasibility

We now consider the actual ellipsoid method. For simplicity, we begin with the problem of deter-
mining whether of not an LP is feasible. Let’s define a particular feasibility problem. Given some
description of a polytope K, and two scalars R, r > 0, suppose we are guaranteed that

(a) K ⊆ Ball(0, R), and

(b) either K = ∅, or else some ball Ball(c, r) ⊆ K for some c ∈ Rn.

The feasibility problem is to figure out which of the two cases in (b) holds, and if K 6= ∅ then to
also find a point x ∈ K. For today we’ll assume that K is given by a strong separation oracle.

Theorem 17.6. Given K, r,R as above (and a strong separation oracle for K), it is possible to
solve the feasibility problem using O(n log(R/r)) calls to the oracle. (This theorem assumes we can
perform exact arithmetric on real numbers.3)

The proof of this theorem captures some of the major ideas of the Ellipsoid algorithm. The basic
structure is simple: At each step t, we are given a current ellipsoid Et that is guaranteed to contain
the set K (assuming we have not found a point x ∈ K yet). The initial ellipsoid is E0 = Ball(0, R).

• At step t, we ask the oracle: is the center ct of Et in K?

If the oracle answers “Yes”, we are done. Else the oracle returns a separating hyperplane
aᵀx = b, such that aᵀct > b but K ⊆ Ht := {x : aᵀx ≤ b}. Hence we know that K is
contained in the piece of the ellipsoid given by Et∩Ht. Note that since the half-space Ht does

3Where is this assumption used? In computing the new ellipsoid, we need to take square-roots. If we were to
round numbers, that could create all sorts of problems. Part of the complication in [GLS88] comes from these issues.

6

https://courses.engr.illinois.edu/cs598csc/sp2010/lectures/lecture9.pdf#page=5

not contain the center ct of the ellipsoid, this piece of the ellipsoid is less than half the entire
ellipsoid.

The crucial idea is this: we find another (small-volume) ellipsoid Et+1 that contains this piece
Et ∩Ht (and hence also K). And we continue.

How do we show that we make progress? The second crucial idea is to show that vol(Et+1) is
considerably smaller than vol(Et). It is possible (see Section 4 and references) to construct an
ellipsoid Et+1 ⊇ Et ∩Ht such that

vol(Et+1)

vol(Et)
≤ e−

1
2(n+1) .

Therefore, after 2(n+1) iterations, the ratio of the volumes is down by at least a factor of 1
e , which

is exactly the kind of constant-fraction reduction we are looking for. Why? By our assumptions,
initially vol(K) ≤ vol(Ball(0, R)); also if K 6= ∅, then vol(K) ≥ vol(Ball(0, r)). Hence, if after
2(n+ 1) ln(R/r) steps, none of the ellipsoid centers have been inside K, we know that K must be
empty.

3.3 Ellipsoid for Convex Optimization

Now we want to solve min{f(x) | x ∈ K}. Again, assume that K is given by a strong separation
oracle, and we have numbers R, r as in the previous section.

The general structure will be familar by now: it combines the ideas from both things we’ve done.

• Let x0 be the origin, E0 = Ball(0, R),K0 = K.

• At time t, ask the separation oracle: “Is the center ct of ellipsoid Et in the convex body Kt?”

Yes: Define half-space Ht := {x | 〈∇f(ct), x − ct〉 ≤ 0}. Observe that Kt ∩Ht contains all
the points in Kt having value at most f(ct).

No: In this case the separation oracle also gives us a separating hyperplane. This defines a
half-space Ht such that ct 6∈ Ht, but Kt ⊆ Ht.

In both cases, set Kt+1 ← Kt∩Ht, and Et+1 is an ellipsoid containing Et∩Ht. Since we knew
that Kt ⊆ Et, we maintain that Kt+1 ⊆ Et+1.

• Finally, after T = 2n(n + 1) ln(R/r)) rounds either we don’t find any point in K—then we
say “K is empty”—or else we output arg min{f(ct) | t ∈ 0 . . . T such that ct ∈ Kt}.

One subtle but important question: we make queries to a separation oracle for Kt, but we are
promised only a separation oracle for K0 = K. To handle this, suppose we have a strong separation
oracle for Kt. To get a strong separation oracle for Kt+1 = Kt ∩Ht we proceed as follows:

Given x̂ ∈ Rn, query the oracle for Kt at x̂. If x̂ 6∈ Kt, the separating hyperplane for
Kt also works for Kt+1. Else, if x̂ ∈ Kt, check if x̂ ∈ Ht. If so, x̂ ∈ Kt+1 = Kt ∩ Ht.
Otherwise, the defining hyperplane for Ht is a separating hyperplane between x̂ and
Kt+1.

This procedure emits a new strong separation oracle for Kt+1, and we can thus obtain a strong
separation oracle for Kn for any n ≥ 0 by induction.

Again, adapting the analysis from the previous sections gives us the following result:

7

Theorem 17.7. Given r,R and a strong separation oracle for a convex body K, and a function
f : K → [−B,B], the Ellipsoid algorithm run for T steps either correctly reports that K = ∅, or
else produces a point x̂ such that

f(x̂)− f(x∗) ≤ 2BR

r
e
− t

2n(n+1) .

Note the similarity to Theorem 17.2, as well as the differences: the exponential term is slower by
a factor of 2(n+ 1), which arises because the volume of the ellipsoids shrinks much slower than in
Grünbaum’s lemma. Also, we lose a factor of R/r because K is potentially smaller than the starting
body by precisely this factor. (Again, this presentation ignores precision issues, and assumes we
can do exact real arithmetic.)

4 Getting the New Ellipsoid

This brings us to the final task: given a current ellipsoid E and a half-space H that does not contain
its center, find a small ellipsoid E ′ that contains E ∩H.

Consider, for example, the general form of an ellipsoid in R2. We can write this as

x2

a2
+
y2

b2
≤ 1.

Or in matrix notation we could also say[
x
y

]T [
1/a2

1/b2

] [
x
y

]
≤ 1

More generally, we should think of any ellipsoid, E , as some invertible linear transformation, L,
applied to the unit ball B(0, 1), and then shifted to the correct center, c. In other words:

L(B(0, 1)) = {Lx : xTx ≤ 1}
= {y : (L−1y)T (L−1y) ≤ 1}
= {y : yT (LLT)−1y ≤ 1}
= {y : yTQ−1y ≤ 1}

Where Q−1 = LLT is a positive semidefinite matrix. For an ellipsoid centered at c we simply write

{y : (y − c)TQ−1(y − c) ≤ 1}.

It is helpful to note that for a ball, A,

vol(L(A)) = vol(A) · |det(L)| =
√

det(Q)vol(A)

The problem of finding an ellipsoid calEt+1 given the ellipsoid Et then boils down to finding a
matrix Qt+1 and a center ct+ 1 such that the resulting ellipsoid contain Et ∩Ht and satisfies

vol(Et+1)

vol(Et)
≤ e−1/2(n+1)

The basic idea is simple:

8

• Consider the special case where E is the ball Ball(0, 1), and H = {x | x1 ≥ 0}. We can choose
a center c1 and matrix Q1 that contains the specified half ball. Using our expression for the
volume of an ellipsoid, we can also argue that we have constructed a sufficiently small ellipsoid.
In fact, we will aim to chose the minimum volume ellipsoid that meets our requirements.

• We can then see that applying a similar transformation to any ellipsoid will, in fact, meet our
requirements, thus telling us how to construct Et+1 given some Et.

This result is summarized in the following claim:

Claim 17.8. Given the ellipsoid Et = (ct, Qt) and the separating hyperplane aTt (x − ct) ≤ 0, the
ellipsoid Et+1 = (ct+1, Qt+1) is found by taking

ct+1 = ct −
1

n+ 1
h

and

Qt+1 =
n2

n2 − 1

(
Qk −

2

n+ 1
hhT

)
where h =

√
aTt Qtat.

For a more detailed description and proof of this process, see these notes from our LP/SDP course
for details.

References

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
J. ACM, 51(4):540–556, July 2004. 2.3

[DOW55] George B Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of Mathe-
matics, 5(2):183–195, 1955. 1

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization. Springer-Verlag, Berlin, 1988. 3.1, 3.1.2, 3

[Grü60] B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes.
Pacific J. Math., 10:1257–1261, 1960. 17.1

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinator-
ica, 4(4):373–395, 1984. 1

[Kha79] Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20(191–196), 1979. 1

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980. 3.1

[Lev65] A. Y. Levin. On an algorithm for the minimization of convex functions over convex
functions. Soviet Mathematics Doklady, 160(1244–1247), 1965. 2.1

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming.
Algorithmica, 16(4-5):498–516, 1996. 1

9

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture08.pdf

[New65] D. J. Newman. Location of the maximum on unimodal surfaces. J. ACM, 12(3):395–398,
July 1965. 2.1

[Sei91] Raimund Seidel. Small-dimensional linear programming and convex hulls made easy.
Discrete & Computational Geometry, 6(3):423–434, 1991. 1

[SZ71] Naum Z Shor and NG Zhurbenko. The minimization method using space dilatation in
direction of difference of two sequential gradients. Kibernetika, 7(3):51–59, 1971. 3.1

10

	LP Approaches
	The Center-of-Gravity Algorithm
	The Algorithm
	Analysis of Center of Gravity
	Comments

	An Overview of the Ellipsoid Algorithm
	Theorems about the Ellipsoid Algorithm
	Separation Implies Optimization
	Exponential-Sized LPs

	Ellipsoid for Feasibility
	Ellipsoid for Convex Optimization

	Getting the New Ellipsoid

