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1 Introduction

Let us start by recalling the online gradient descent for optimizing convex functions. Remember
the set up: given a fixed € > 0, we present at each time step ¢ a vector z; in a closed convex set
K C R", the adversary will then choose a function f; : K — R which is convex and smooth. We
also assume f; is G-Lipschitz with respect to || - |2, which means

fe(x) — fi(y)

l ” < G for all distinct z,y € K, or equivalently ||V fi(z)]|2 < G for all z € K.
T —Yll2

We showed that for any x* € K, a slightly modified variant of the gradient descent algorithm,
starting from a point z¢ € K with ||xg —x*[|2 < D and after T" steps, produces z1, ...,z such that
zi € Kfori=1,...,T, and

T T

T 2 ¥ — zall2
t_zlft(wt) < ;ft(w*) WS "gft(xt)H? nl T ol” (15.1)

Set n = GL\;T to get

T
D flw) <> fila) + ¢D. (15.2)

Then, we can set T' = (GTD)2 and & = Zz‘T:1 x; to get
T T
Z fi(@) < Z fi(zt) (By convexity of f)
t=1 t=1
T
<Y flat) + e (By 15.2)
t=1 regret

Notice that this gradient descent algorithm works for all convex functions over convex bodies, as
for Multiplicative Weight (MW) algorithm which only works for linear functions and over A, =
{z eRY : >, x; =1}, ie. the simplex in R". Let us illustrate this difference in more details in
the following example to motivate the topic for today’s lecture.

Example 15.1. Suppose f; : A, — R and fi(x) = (¢, z), where ¢, € [-1,1]" for t = 1,...,T.
Notice that for all ¢ = 1,...,T, function f; is (y/n)- Lipschitz, and for any zo € A, we have
|zo — 2*[]2 < V2 for all z* € A,,. Hence, applying the online gradient descent method for T' =

(@)2 = 2—7; outputs a solution & with regret at most e.

On the other hand, this problem is an MW problem. Hence, we can apply Hedge algorithm for
T= IHT” steps to get a regret of at most e.

Therefore, gradient descent needs significantly more steps to be able to guarantee an e regret
compared to Hedge algorithm.



2 Norms and their Duals

In the previous section we described a gradient descent method which relied on the Euclidean norm
| - ]2. Today we will try different norm functions to see if we can overcome the shortcoming of
gradient descent that was mentioned in Example 15.1. First we need to formally define a norm and
its dual.

Definition 15.2. A function || - || : R" — R is a norm if
1. If ||z|| = 0 for z € R™, then x = 0;
2. for « € R and = € R™ we have ||az| = |a|||z|; and
3. for z,y € R™ we have ||z + y|| < |||l + ||yl

1
Example 15.3. {,-norm for p € Z is defined as ||z, = (3 ;- 2¥)? for z € R™. Also {o-norm is
defined as ||z||o = max;—1,.n,x; for z € R". See Figure 15.1 for further illustration.
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Figure 15.1: The unit ball in ¢;-norm (Green), f2-norm (Blue), and {s-norm (Red).

Definition 15.4. Let || - || be a norm. Then the dual norm of || - || is a function || - ||« defined as

lyll« = sup{(z, y) « |lz| <1}.

Corollary 15.5. For z,y € R", we have (x,y) < ||z||||y||«.

Proof. Assume ||z|| # 0, otherwise both sides are 0. Since ||H§—”|| = 1, we have <i”,y> <|lyll«. O

[l

Example 15.6. The dual norm of #5-norm is #9-norm. The dual norm of #1-norm is the f,,-norm.
Theorem 15.7. The dual norm of {y-norm || - ||, is €g-norm || - ||4, where % + % =1.

Theorem 15.8. We have (|| - |[«)« = || - ||, for || - || defined on a finite dimension space.

3 Online Mirror Descent

We now review the mirror descent algorithm introduced by Nemirovski and Yudin [NY78]. Recall
in gradient descent method in each step we set x; 11 = x; —nV fi(x). Note that V f; is a function in
the dual space. We often overlook this fact since in the gradient descent method we work in R™ with
fo-norm, and this normed space is in fact self-dual. However, Example 15.1 suggests that ¢s-norm
might not be the “right” norm. To this end, we define a refined version of lipschitz continuity for
a norm || - ||.



Definition 15.9. Let f be a differentiable function. Then f is G- Lipschitz with respect to || - || if

IV f(x)|l« <G for all z € R™.

Since V f; is a function in the dual space —nV f;(z;) is a step in the dual space. Hence, we need to
map our current point z; to a point in the dual space, namely 6;. After taking the gradient step,
i 41 = 0y — 1V fir(x¢) we still have to map 6;41 back to a point in the primal space 2, ;. Similar to
gradient descent x;,, might not be in the closed convex feasible region K, so we need to project
ry,q back to a “close” xyy1 in K. This was an informal description of the mirror descent algorithm
(See Figure 15.2).

Figure 15.2: The four basic steps in each iteration of the mirror descent algorithm

To justify the appellation of the algorithm, notice that the dual space acts as a mirror to the primal
space. That is why we call the functions that map z; to 6; and 6,11 to zj; the mirror maps. To
find a suitable mirror map, we need to define a-strongly convex function with respect to a norm

-1l
Definition 15.10. Convex and differentiable function i : R” — R is a-strongly convex with respect
to || - || if
a

h(y) > h(@) + (VA(2),y = 2) + 5 lly — ]
Example 15.11. Function o : R” — R defined as hy(z) = ||z|]3 is 1-strongly convex with respect
to [| - [|2-
Example 15.12. Function hy : R” — R defined as ho(z) = > 1 | x;log; is ﬁ—s‘crongly convex
with respect to || - ||1. Function hs is the negative entropy function.
Let h : R™ — R be an a-strongly-convex function wrt || - ||. Then, we will use V(h) : R® — R" as
our mirror map. Thus, we will set 6; = Vh(z;), and @, ; = (Vh)(041). See Figure 15.2.
Example 15.13. Recall function hq is Example 15.11. We have Vhy(z) = z, and (Vh1)~(6) = 6.
Example 15.13 gives a nice intuition why the gradient descent algorithm works within the primal

and dual space unnoticed.

Example 15.14. Consider function hy in Example 15.12. We have Vhg(z); = (Inz; + 1);, and
(Vha)H(0); = (% 1),



As mentioned before, the mirror descent algorithm is basically similar to gradient descent when we
are working in R™ normed with | - ||2, and when the mirror map is Vh;. Hence, we will explain the
algorithm when we are on R" normed with || - [|; and mirror map Vhy. For simplicity, we refer to
Ty, Ty g, Tig1, 0, and O4q by x, 2", 27,6, and 67, respectively.

(i) Start with  and compute § = (Inx; 4+ 1);, i.e. map x to 6 using the mirror map Vhy to the
dual space.

(ii) Set 61 = (0 —nV fi(z)) = (Inz; +1—nV fi(z);), i.e. take the gradient step in the dual space.

(ifi) Find 2’ = (e¥ —1); = (el@i—n(VA@)i), = (z;-e~(VF@))), i.e. map 67 back to the primal

space.

Remember Example 15.1 where fi(x) = (¢;, x), in this case V f; = {4, so the mirror descent algorithm
finds 2’ = (z;e~"%);, which is similar to Hedge algorithm.

There is still one missing step in the algorithm:
(iv) Project ' back to point 2T in the feasible region K.

In order to do this, we need to define Bregman distance.

Definition 15.15. The Bregman distance of x and y with respect to function h, denoted by
Dp(ylz) is
hy) = W) = (Vh(z),y — 2).

Figure 15.3 describes the Bregman distance geometrically for h : R — R.
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Figure 15.3: Dy (y||x) for function h: R — R.

We can now define the notation of Bregman projection.

Definition 15.16. The Bregman projection of point 2’ onto convex set K is

" = argmin Dy, (z||2").
zeK
Example 15.17. Consider function hy(z) = %||z[|3 from Example 15.11. Then
1 1
Di(wle) = 21l — 22l — (o )

1 1

= 2 lol3+ G113~ (.9}
1 2

= Slly— =l
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Therefore, when we apply the mirror descent algorithm with fo-norm and mirror function hq, the
projection step is exactly similar to the projection step in gradient descent. This is because for hq,
Bregman distance basically similar to the Euclidean distance.

Example 15.18. For function hy(xz) = )" ; z; Inz; from Example 15.12, we have

Dy, (yllz) = Zyz Iny; — sz Inz; — Z(lnmi +1)(yi — =)

=1
Y
= _Zyi +Z$z‘ +Zyz’1n;:,
=1 i=1 =1
KL(yllz)

KL(y||z) is known as the Kullback-Leibler divergence. Now in the case of ¢;-norm with mirror
map hg, step (iv) is

. + _ xlenti
(lv) X - (2?211129677][3.

simplex A,,) with respect to Bregman distance Dy, .

)i, i.e. take Bregman projection of 2’ onto the feasible region (the unit

4 Analysis
We prove the following theorem.

Theorem 15.19. Let fi,..., fr be convex and differentiable functions, || - || be a norm function,
and h be an a-strongly convex function with respect to || - ||, then the mirror descent algorithm
starting with xo and taking constant step size 1 in every iteration, produces x1,...,xp such that

T
th (x4) < th o 2" |lzo0) + N2 !Lth(wt)Hi , for all x* (15.3)

Before proving Theorem 15.19, let us take a look at Inequality 15.3 in the two cases we discussed
at length in the previous section.

If || - || is f2-norm and h is function h; from Example 15.11, then Inequality 15.3 becomes
— r 2
th ) < Zf et —wl S IVA@IE
2n 2

which is Inequality 15.1.

If || - || is ¢1-norm and h is function hs from Example 15.12, then Inequality 15.3 becomes
T T n * 1, & T
Y ox¥ln Y] 2
Z Uy, ap) < Z by, x* Zl_l L0 4 N2z Il , for all z* € A,,.
t=1 t=1 2n 2

Since ||4]|oo < 1, we have

d a lnn nT
; Et,l‘t < ; £t> — + ? , for all x* € A,,.



Proof of Theorem 15.19. Define potential ®; = W. The amortized cost at time ¢ is

ft(fll‘t) — ft(lﬁ*) + ((I)t-i-l — @t) (154)
Now
1
Oy — Py = E(Dh(w*llxm) — Dp(a*||x1))
1 * * * *
=~ (h(@") = Mps1) — (VA(xr41), 2 — @pp1) — D(@") + h(ze) + (Vh(ze), 2" — 21))
n S——— SN——
Or+1 0
1
= *(h(ﬂft) —h(xi1) = (O =V fi(zy), 2" — 2yq1) + (O, 2" — 33t>)
n ~——
Vi
1
= E(h(xt) — h(zig1) = (O, 2 — Tog1) + (Vi 2" — 2e41))
1
< p (%th_,_l — x¢||? + (Vg ¥ — 37t+1>) (By a-strong convexity of h wrt to || - ||)
Plug this back to

fe(@) = fiu(@™) + (Re1 — @) < filwe) — fi2™) + %me =yl + (Ve, 2" — 2411)

o
< filze) — fi(x®) + (Vi, 2" — xy) +%||$t+1 —x|)? + (V2 — 1)

< 0 by convexity of fi

o'

< %||$t+1 — zg|2 4 | Vellsllze — zesa || (By Corollary 15.5)
« 1,n «

< %th-&-l =il 5 IVl + Eth —ae|?)  (By AM-GM)
n 2

< —||Vell5-

< 55 IVil

Thus,

) <@ — Pryg + Z *HVtHQ

Mﬂ
IIM%

t=

—

g%+2%wm

t=1

T
_ Do X, VR
- n 200 '

5 Mirror Descent as Prox version of Gradient Descent

In this lecture, we reviewed mirror descent algorithm as a gradient descent scheme where we do
the gradient step in the dual space. A shorter (but less intuitive) description of mirror descent in
the following.



Algorithm 1 Mirror Descent Algorithm
fort< 0toT —1do
Tiy1 < argminge g {n(V fe(x¢), x) + Dp(x|[x)}
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