Apr 2015, Feb 2016 Lecturer: Anupam Gupta Scribe: Arash Haddadan

Introduction 1

Let us start by recalling the online gradient descent for optimizing convex functions. Remember the set up: given a fixed $\epsilon > 0$, we present at each time step t a vector x_t in a closed convex set $K \subseteq \mathbb{R}^n$, the adversary will then choose a function $f_t: K \to \mathbb{R}$ which is convex and smooth. We also assume f_t is G-Lipschitz with respect to $\|\cdot\|_2$, which means

$$\frac{f_t(x) - f_t(y)}{\|x - y\|_2} \le G \text{ for all distinct } x, y \in K, \text{ or equivalently } \|\nabla f_t(x)\|_2 \le G \text{ for all } x \in K.$$

We showed that for any $x^* \in K$, a slightly modified variant of the gradient descent algorithm, starting from a point $x_0 \in K$ with $||x_0 - x^*||_2 \leq D$ and after T steps, produces x_1, \ldots, x_T such that $x_i \in K$ for $i = 1, \ldots, T$, and

$$\sum_{t=1}^{T} f_t(x_t) \le \sum_{t=1}^{T} f_t(x^*) + \frac{\eta \sum_{t=1}^{T} \|\nabla f_t(x_t)\|_2^2}{2} + \frac{\|x^* - x_0\|^2}{2\eta}.$$
 (15.1)

Set $\eta = \frac{D}{G\sqrt{T}}$ to get

$$\sum_{t=1}^{T} f_t(x_t) \le \sum_{t=1}^{T} f_t(x^*) + \frac{GD}{\sqrt{T}}.$$
(15.2)

CMU, Spring 2017

Then, we can set $T = \left(\frac{GD}{\epsilon}\right)^2$ and $\hat{x} = \frac{1}{T} \sum_{i=1}^{T} x_i$ to get

$$\sum_{t=1}^{T} f_t(\hat{x}) \le \sum_{t=1}^{T} f_t(x_t)$$
 (By convexity of f_t)
$$\le \sum_{t=1}^{T} f_t(x^*) + \underbrace{\epsilon}_{\text{regret}}$$
 (By 15.2)

Notice that this gradient descent algorithm works for all convex functions over convex bodies, as for Multiplicative Weight (MW) algorithm which only works for linear functions and over $\Delta_n =$ $\{x \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}$, i.e. the simplex in \mathbb{R}^n . Let us illustrate this difference in more details in the following example to motivate the topic for today's lecture.

Example 15.1. Suppose $f_t: \Delta_n \to \mathbb{R}$ and $f_t(x) = \langle \ell_t, x \rangle$, where $\ell_t \in [-1, 1]^n$ for $t = 1, \ldots, T$. Notice that for all $t=1,\ldots,T$, function f_t is (\sqrt{n}) - Lipschitz, and for any $x_0\in\Delta_n$ we have $||x_0 - x^*||_2 \le \sqrt{2}$ for all $x^* \in \Delta_n$. Hence, applying the online gradient descent method for T = $(\frac{\sqrt{2}\sqrt{n}}{\epsilon})^2 = \frac{2n}{\epsilon^2}$ outputs a solution \hat{x} with regret at most ϵ .

On the other hand, this problem is an MW problem. Hence, we can apply Hedge algorithm for $T = \frac{\ln n}{\epsilon}$ steps to get a regret of at most ϵ .

Therefore, gradient descent needs significantly more steps to be able to guarantee an ϵ regret compared to Hedge algorithm.

2 Norms and their Duals

In the previous section we described a gradient descent method which relied on the Euclidean norm $\|\cdot\|_2$. Today we will try different norm functions to see if we can overcome the shortcoming of gradient descent that was mentioned in Example 15.1. First we need to formally define a norm and its dual.

Definition 15.2. A function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ is a *norm* if

- 1. If ||x|| = 0 for $x \in \mathbb{R}^n$, then x = 0;
- 2. for $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$ we have $\|\alpha x\| = |\alpha| \|x\|$; and
- 3. for $x, y \in \mathbb{R}^n$ we have $||x + y|| \le ||x|| + ||y||$.

Example 15.3. ℓ_p -norm for $p \in \mathbb{Z}_+$ is defined as $||x||_p = (\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$ for $x \in \mathbb{R}^n$. Also ℓ_∞ -norm is defined as $||x||_\infty = \max_{i=1,\dots,n} x_i$ for $x \in \mathbb{R}^n$. See Figure 15.1 for further illustration.

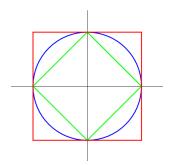


Figure 15.1: The unit ball in ℓ_1 -norm (Green), ℓ_2 -norm (Blue), and ℓ_{∞} -norm (Red).

Definition 15.4. Let $\|\cdot\|$ be a norm. Then the dual norm of $\|\cdot\|$ is a function $\|\cdot\|_*$ defined as

$$||y||_* = \sup\{\langle x, y \rangle : ||x|| \le 1\}.$$

Corollary 15.5. For $x, y \in \mathbb{R}^n$, we have $\langle x, y \rangle \leq ||x|| ||y||_*$.

Proof. Assume $||x|| \neq 0$, otherwise both sides are 0. Since $||\frac{x}{||x||}|| = 1$, we have $\langle \frac{x}{||x||}, y \rangle \leq ||y||_*$.

Example 15.6. The dual norm of ℓ_2 -norm is ℓ_2 -norm. The dual norm of ℓ_1 -norm is the ℓ_{∞} -norm.

Theorem 15.7. The dual norm of ℓ_p -norm $\|\cdot\|_p$ is ℓ_q -norm $\|\cdot\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 15.8. We have $(\|\cdot\|_*)_* = \|\cdot\|$, for $\|\cdot\|$ defined on a finite dimension space.

3 Online Mirror Descent

We now review the mirror descent algorithm introduced by Nemirovski and Yudin [NY78]. Recall in gradient descent method in each step we set $x_{t+1} = x_t - \eta \nabla f_t(x_t)$. Note that ∇f_t is a function in the dual space. We often overlook this fact since in the gradient descent method we work in \mathbb{R}^n with ℓ_2 -norm, and this normed space is in fact self-dual. However, Example 15.1 suggests that ℓ_2 -norm might not be the "right" norm. To this end, we define a refined version of lipschitz continuity for a norm $\|\cdot\|$.

Definition 15.9. Let f be a differentiable function. Then f is G- Lipschitz with respect to $\|\cdot\|$ if

$$\|\nabla f(x)\|_* \le G$$
 for all $x \in \mathbb{R}^n$.

Since ∇f_t is a function in the dual space $-\eta \nabla f_t(x_t)$ is a step in the dual space. Hence, we need to map our current point x_t to a point in the dual space, namely θ_t . After taking the gradient step, $\theta_{t+1} = \theta_t - \eta \nabla f_t(x_t)$ we still have to map θ_{t+1} back to a point in the primal space x'_{t+1} . Similar to gradient descent x'_{t+1} might not be in the closed convex feasible region K, so we need to project x'_{t+1} back to a "close" x_{t+1} in K. This was an informal description of the mirror descent algorithm (See Figure 15.2).

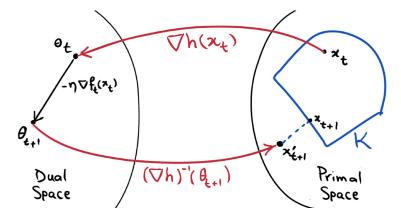


Figure 15.2: The four basic steps in each iteration of the mirror descent algorithm

To justify the appellation of the algorithm, notice that the dual space acts as a mirror to the primal space. That is why we call the functions that map x_t to θ_t and θ_{t+1} to x'_{t+1} the mirror maps. To find a suitable mirror map, we need to define α -strongly convex function with respect to a norm $\|\cdot\|$.

Definition 15.10. Convex and differentiable function $h : \mathbb{R}^n \to \mathbb{R}$ is α -strongly convex with respect to $\|\cdot\|$ if

$$h(y) \ge h(x) + \langle \nabla h(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2.$$

Example 15.11. Function $h_1 : \mathbb{R}^n \to \mathbb{R}$ defined as $h_1(x) = \frac{1}{2} ||x||_2^2$ is 1-strongly convex with respect to $||\cdot||_2$.

Example 15.12. Function $h_2: \mathbb{R}^n \to \mathbb{R}$ defined as $h_2(x) = \sum_{i=1}^n x_i \log x_i$ is $\frac{1}{\ln 2}$ -strongly convex with respect to $\|\cdot\|_1$. Function h_2 is the negative entropy function.

Let $h: \mathbb{R}^n \to \mathbb{R}$ be an α -strongly-convex function wrt $\|\cdot\|$. Then, we will use $\nabla(h): \mathbb{R}^n \to \mathbb{R}^n$ as our mirror map. Thus, we will set $\theta_t = \nabla h(x_t)$, and $x'_{t+1} = (\nabla h)^{-1}(\theta_{t+1})$. See Figure 15.2.

Example 15.13. Recall function h_1 is Example 15.11. We have $\nabla h_1(x) = x$, and $(\nabla h_1)^{-1}(\theta) = \theta$.

Example 15.13 gives a nice intuition why the gradient descent algorithm works within the primal and dual space unnoticed.

Example 15.14. Consider function h_2 in Example 15.12. We have $\nabla h_2(x)_i = (\ln x_i + 1)_i$, and $(\nabla h_2)^{-1}(\theta)_i = (e^{\theta_i - 1})_i$.

As mentioned before, the mirror descent algorithm is basically similar to gradient descent when we are working in \mathbb{R}^n normed with $\|\cdot\|_2$, and when the mirror map is ∇h_1 . Hence, we will explain the algorithm when we are on \mathbb{R}^n normed with $\|\cdot\|_1$ and mirror map ∇h_2 . For simplicity, we refer to $x_t, x'_{t+1}, x_{t+1}, \theta_t$, and θ_{t+1} by x, x', x^+, θ , and θ^+ , respectively.

- (i) Start with x and compute $\theta = (\ln x_i + 1)_i$, i.e. map x to θ using the mirror map ∇h_2 to the dual space.
- (ii) Set $\theta^+ = (\theta \eta \nabla f_t(x)) = (\ln x_i + 1 \eta \nabla f_t(x)_i)_i$, i.e. take the gradient step in the dual space.
- (iii) Find $x' = (e^{\ln \theta_i^+ 1})_i = (e^{\ln x_i \eta(\nabla f_t(x))_i})_i = (x_i \cdot e^{-\eta(\nabla f_t(x))_i})_i$, i.e. map θ^+ back to the primal space.

Remember Example 15.1 where $f_t(x) = \langle \ell_t, x \rangle$, in this case $\nabla f_t = \ell_t$, so the mirror descent algorithm finds $x' = (x_i e^{-\eta \ell_i})_i$, which is similar to Hedge algorithm.

There is still one missing step in the algorithm:

(iv) Project x' back to point x^+ in the feasible region K.

In order to do this, we need to define Bregman distance.

Definition 15.15. The Bregman distance of x and y with respect to function h, denoted by $D_h(y||x)$ is

$$h(y) - h(x) - \langle \nabla h(x), y - x \rangle.$$

Figure 15.3 describes the Bregman distance geometrically for $h: \mathbb{R} \to \mathbb{R}$.

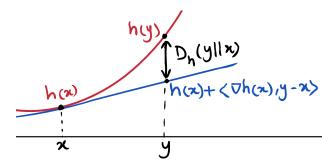


Figure 15.3: $D_h(y||x)$ for function $h: \mathbb{R} \to \mathbb{R}$.

We can now define the notation of Bregman projection.

Definition 15.16. The Bregman projection of point x' onto convex set K is

$$x^+ = \arg\min_{x \in K} D_h(x||x').$$

Example 15.17. Consider function $h_1(x) = \frac{1}{2} ||x||_2^2$ from Example 15.11. Then

$$D_{h_1}(y||x) = \frac{1}{2}||y||_2^2 - \frac{1}{2}||x||_2^2 - \langle x, y - x \rangle$$
$$= \frac{1}{2}||y||_2^2 + \frac{1}{2}||x||_2^2 - \langle x, y \rangle$$
$$= \frac{1}{2}||y - x||_2^2.$$

Therefore, when we apply the mirror descent algorithm with ℓ_2 -norm and mirror function h_1 , the projection step is exactly similar to the projection step in gradient descent. This is because for h_1 , Bregman distance basically similar to the Euclidean distance.

Example 15.18. For function $h_2(x) = \sum_{i=1}^n x_i \ln x_i$ from Example 15.12, we have

$$D_{h_2}(y||x) = \sum_{i=1}^n y_i \ln y_i - \sum_{i=1}^n x_i \ln x_i - \sum_{i=1}^n (\ln x_i + 1)(y_i - x_i)$$

$$= -\sum_{i=1}^n y_i + \sum_{i=1}^n x_i + \underbrace{\sum_{i=1}^n y_i \ln \frac{y_i}{x_i}}_{KL(y||x)},$$

KL(y||x) is known as the Kullback-Leibler divergence. Now in the case of ℓ_1 -norm with mirror map h_2 , step (iv) is

(iv) $x^+ = (\frac{x_i' e^{\eta \ell_i}}{\sum_{j=1}^n x_j' e^{-\eta \ell_j}})_i$, i.e. take Bregman projection of x' onto the feasible region (the unit simplex Δ_n) with respect to Bregman distance D_{h_2} .

4 Analysis

We prove the following theorem.

Theorem 15.19. Let f_1, \ldots, f_T be convex and differentiable functions, $\|\cdot\|$ be a norm function, and h be an α -strongly convex function with respect to $\|\cdot\|$, then the mirror descent algorithm starting with x_0 and taking constant step size η in every iteration, produces x_1, \ldots, x_T such that

$$\sum_{t=1}^{T} f_t(x_t) \le \sum_{t=1}^{n} f_t(x^*) + \frac{D_h(x^* \| x_0)}{\eta} + \frac{\eta \sum_{t=1}^{T} \| \nabla f_t(x_t) \|_*^2}{2\alpha} , \text{ for all } x^*$$
 (15.3)

Before proving Theorem 15.19, let us take a look at Inequality 15.3 in the two cases we discussed at length in the previous section.

If $\|\cdot\|$ is ℓ_2 -norm and h is function h_1 from Example 15.11, then Inequality 15.3 becomes

$$\sum_{t=1}^{T} f_t(x_t) \le \sum_{t=1}^{n} f_t(x^*) + \frac{\|x^* - x_0\|_2^2}{2\eta} + \frac{\eta \sum_{t=1}^{T} \|\nabla f_t(x_t)\|_2^2}{2} \quad , \text{ for all } x^*,$$

which is Inequality 15.1.

If $\|\cdot\|$ is ℓ_1 -norm and h is function h_2 from Example 15.12, then Inequality 15.3 becomes

$$\sum_{t=1}^{T} \langle \ell_t, x_t \rangle \leq \sum_{t=1}^{T} \langle \ell_t, x^* \rangle + \frac{\sum_{i=1}^{n} x_i^* \ln \frac{x^*}{x_0}}{2\eta} + \frac{\eta \sum_{t=1}^{T} \|\ell_t\|_{\infty}^2}{2} \quad , \text{ for all } x^* \in \Delta_n.$$

Since $\|\ell_t\|_{\infty} \leq 1$, we have

$$\sum_{t=1}^{T} \langle \ell_t, x_t \rangle \leq \sum_{t=1}^{T} \langle \ell_t, x^* \rangle + \frac{\ln n}{2\eta} + \frac{\eta T}{2} \quad , \text{ for all } x^* \in \Delta_n.$$

Proof of Theorem 15.19. Define potential $\Phi_t = \frac{D_h(x^*||x_t)}{\eta}$. The amortized cost at time t is

$$f_t(x_t) - f_t(x^*) + (\Phi_{t+1} - \Phi_t).$$
 (15.4)

Now

$$\Phi_{t+1} - \Phi_{t} = \frac{1}{\eta} \Big(D_{h}(x^{*} || x_{t+1}) - D_{h}(x^{*} || x_{t}) \Big) \\
= \frac{1}{\eta} \Big(h(x^{*}) - h(x_{t+1}) - \langle \underbrace{\nabla h(x_{t+1})}_{\theta_{t+1}}, x^{*} - x_{t+1} \rangle - h(x^{*}) + h(x_{t}) + \langle \underbrace{\nabla h(x_{t})}_{\theta_{t}}, x^{*} - x_{t} \rangle \Big) \\
= \frac{1}{\eta} \Big(h(x_{t}) - h(x_{t+1}) - \langle \theta_{t} - \eta \underbrace{\nabla f_{t}(x_{t})}_{\nabla_{t}}, x^{*} - x_{t+1} \rangle + \langle \theta_{t}, x^{*} - x_{t} \rangle \Big) \\
= \frac{1}{\eta} \Big(h(x_{t}) - h(x_{t+1}) - \langle \theta_{t}, x_{t} - x_{t+1} \rangle + \eta \langle \nabla_{t}, x^{*} - x_{t+1} \rangle \Big) \\
\leq \frac{1}{\eta} \Big(\frac{\alpha}{2} || x_{t+1} - x_{t} ||^{2} + \eta \langle \nabla_{t}, x^{*} - x_{t+1} \rangle \Big) \qquad \text{(By α-strong convexity of h wrt to $|| \cdot ||)}$$

Plug this back to 15.4

$$f_{t}(x_{t}) - f_{t}(x^{*}) + (\Phi_{t+1} - \Phi_{t}) \leq f_{t}(x_{t}) - f_{t}(x^{*}) + \frac{\alpha}{2\eta} \|x_{t+1} - x_{t}\|^{2} + \langle \nabla_{t}, x^{*} - x_{t+1} \rangle$$

$$\leq \underbrace{f_{t}(x_{t}) - f_{t}(x^{*}) + \langle \nabla_{t}, x^{*} - x_{t} \rangle}_{\leq 0 \text{ by convexity of } f_{t}} + \frac{\alpha}{2\eta} \|x_{t+1} - x_{t}\|^{2} + \langle \nabla_{t}, x_{t} - x_{t+1} \rangle$$

$$\leq \frac{\alpha}{2\eta} \|x_{t+1} - x_{t}\|^{2} + \|\nabla_{t}\|_{*} \|x_{t} - x_{t+1}\| \qquad \text{(By Corollary 15.5)}$$

$$\leq \frac{\alpha}{2\eta} \|x_{t+1} - x_{t}\|^{2} + \frac{1}{2} \left(\frac{\eta}{\alpha} \|\nabla_{t}\|_{*}^{2} + \frac{\alpha}{\eta} \|x_{t} - x_{t+1}\|^{2}\right) \quad \text{(By AM-GM)}$$

$$\leq \frac{\eta}{2\alpha} \|\nabla_{t}\|_{*}^{2}.$$

Thus,

$$\sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x^*) \le \Phi_0 - \Phi_{T+1} + \sum_{t=1}^{T} \frac{\eta}{2\alpha} \|\nabla_t\|_*^2$$

$$\le \Phi_0 + \sum_{t=1}^{T} \frac{\eta}{2\alpha} \|\nabla_t\|_*^2$$

$$\le \frac{D_h(x^* \|x_0\|_*^2)}{\eta} + \frac{\eta \sum_{t=1}^{T} \|\nabla_t\|_*^2}{2\alpha}.$$

5 Mirror Descent as Prox version of Gradient Descent

In this lecture, we reviewed mirror descent algorithm as a gradient descent scheme where we do the gradient step in the dual space. A shorter (but less intuitive) description of mirror descent in the following.

Algorithm 1 Mirror Descent Algorithm

for
$$t \leftarrow 0$$
 to $T-1$ do $x_{t+1} \leftarrow \arg\min_{x \in K} \{ \eta \langle \nabla f_t(x_t), x \rangle + D_h(x || x_t) \}$

References

- [Bub15] Sébastien Bubeck, Convex optimization: Algorithms and complexity, Found. Trends Mach. Learn. 8 (2015), no. 3-4, 231–357.
- [NY78] Arkadi Nemirovski and D. Yudin, On cesaros convergence of the gradient descent method for finding saddle points of convex-concave functions, Daklady Akademii Nauk SSSR 239 (1978), no. 4, 291–307. 3