
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #15: Gradient descent & Mirror descent Apr 2015, Feb 2016
Lecturer: Anupam Gupta Scribe: Arash Haddadan

1 Introduction

Let us start by recalling the online gradient descent for optimizing convex functions. Remember
the set up: given a fixed ε > 0, we present at each time step t a vector xt in a closed convex set
K ⊆ Rn, the adversary will then choose a function ft : K → R which is convex and smooth. We
also assume ft is G-Lipschitz with respect to ‖ · ‖2, which means

ft(x)− ft(y)

‖x− y‖2
≤ G for all distinct x, y ∈ K, or equivalently ‖∇ft(x)‖2 ≤ G for all x ∈ K.

We showed that for any x∗ ∈ K, a slightly modified variant of the gradient descent algorithm,
starting from a point x0 ∈ K with ‖x0−x∗‖2 ≤ D and after T steps, produces x1, . . . , xT such that
xi ∈ K for i = 1, . . . , T , and

T∑
t=1

ft(xt) ≤
T∑
t=1

ft(x
∗) +

η
∑T

t=1 ‖∇ft(xt)‖22
2

+
‖x∗ − x0‖2

2η
. (15.1)

Set η = D
G
√
T

to get

T∑
t=1

ft(xt) ≤
T∑
t=1

ft(x
∗) +

GD√
T
. (15.2)

Then, we can set T = (GDε)2 and x̂ = 1
T

∑T
i=1 xi to get

T∑
t=1

ft(x̂) ≤
T∑
t=1

ft(xt) (By convexity of ft)

≤
T∑
t=1

ft(x
∗) + ε︸︷︷︸

regret

(By 15.2)

Notice that this gradient descent algorithm works for all convex functions over convex bodies, as
for Multiplicative Weight (MW) algorithm which only works for linear functions and over ∆n =
{x ∈ Rn+ :

∑n
i=1 xi = 1}, i.e. the simplex in Rn. Let us illustrate this difference in more details in

the following example to motivate the topic for today’s lecture.

Example 15.1. Suppose ft : ∆n → R and ft(x) = 〈`t, x〉, where `t ∈ [−1, 1]n for t = 1, . . . , T .
Notice that for all t = 1, . . . , T , function ft is (

√
n)- Lipschitz, and for any x0 ∈ ∆n we have

‖x0 − x∗‖2 ≤
√

2 for all x∗ ∈ ∆n. Hence, applying the online gradient descent method for T =

(
√
2
√
n

ε)2 = 2n
ε2

outputs a solution x̂ with regret at most ε.

On the other hand, this problem is an MW problem. Hence, we can apply Hedge algorithm for
T = lnn

ε steps to get a regret of at most ε.

Therefore, gradient descent needs significantly more steps to be able to guarantee an ε regret
compared to Hedge algorithm.

1

2 Norms and their Duals

In the previous section we described a gradient descent method which relied on the Euclidean norm
‖ · ‖2. Today we will try different norm functions to see if we can overcome the shortcoming of
gradient descent that was mentioned in Example 15.1. First we need to formally define a norm and
its dual.

Definition 15.2. A function ‖ · ‖ : Rn → R is a norm if

1. If ‖x‖ = 0 for x ∈ Rn, then x = 0;

2. for α ∈ R and x ∈ Rn we have ‖αx‖ = |α|‖x‖; and

3. for x, y ∈ Rn we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Example 15.3. `p-norm for p ∈ Z+ is defined as ‖x‖p = (
∑n

i=1 x
p
i)

1
p for x ∈ Rn. Also `∞-norm is

defined as ‖x‖∞ = maxi=1,...,n xi for x ∈ Rn. See Figure 15.1 for further illustration.

Figure 15.1: The unit ball in `1-norm (Green), `2-norm (Blue), and `∞-norm (Red).

Definition 15.4. Let ‖ · ‖ be a norm. Then the dual norm of ‖ · ‖ is a function ‖ · ‖∗ defined as

‖y‖∗ = sup{〈x, y〉 : ‖x‖ ≤ 1}.

Corollary 15.5. For x, y ∈ Rn, we have 〈x, y〉 ≤ ‖x‖‖y‖∗.

Proof. Assume ‖x‖ 6= 0, otherwise both sides are 0. Since ‖ x
‖x‖‖ = 1, we have 〈 x

‖x‖ , y〉 ≤ ‖y‖∗.

Example 15.6. The dual norm of `2-norm is `2-norm. The dual norm of `1-norm is the `∞-norm.

Theorem 15.7. The dual norm of `p-norm ‖ · ‖p is `q-norm ‖ · ‖q, where 1
p + 1

q = 1.

Theorem 15.8. We have (‖ · ‖∗)∗ = ‖ · ‖, for ‖ · ‖ defined on a finite dimension space.

3 Online Mirror Descent

We now review the mirror descent algorithm introduced by Nemirovski and Yudin [NY78]. Recall
in gradient descent method in each step we set xt+1 = xt−η∇ft(xt). Note that ∇ft is a function in
the dual space. We often overlook this fact since in the gradient descent method we work in Rn with
`2-norm, and this normed space is in fact self-dual. However, Example 15.1 suggests that `2-norm
might not be the “right” norm. To this end, we define a refined version of lipschitz continuity for
a norm ‖ · ‖.

2

Definition 15.9. Let f be a differentiable function. Then f is G- Lipschitz with respect to ‖ · ‖ if

‖∇f(x)‖∗ ≤ G for all x ∈ Rn.

Since ∇ft is a function in the dual space −η∇ft(xt) is a step in the dual space. Hence, we need to
map our current point xt to a point in the dual space, namely θt. After taking the gradient step,
θt+1 = θt− η∇ft(xt) we still have to map θt+1 back to a point in the primal space x′t+1. Similar to
gradient descent x′t+1 might not be in the closed convex feasible region K, so we need to project
x′t+1 back to a “close” xt+1 in K. This was an informal description of the mirror descent algorithm
(See Figure 15.2).

Figure 15.2: The four basic steps in each iteration of the mirror descent algorithm

To justify the appellation of the algorithm, notice that the dual space acts as a mirror to the primal
space. That is why we call the functions that map xt to θt and θt+1 to x′t+1 the mirror maps. To
find a suitable mirror map, we need to define α-strongly convex function with respect to a norm
‖ · ‖.

Definition 15.10. Convex and differentiable function h : Rn → R is α-strongly convex with respect
to ‖ · ‖ if

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
α

2
‖y − x‖2.

Example 15.11. Function h1 : Rn → R defined as h1(x) = 1
2‖x‖

2
2 is 1-strongly convex with respect

to ‖ · ‖2.

Example 15.12. Function h2 : Rn → R defined as h2(x) =
∑n

i=1 xi log xi is 1
ln 2 -strongly convex

with respect to ‖ · ‖1. Function h2 is the negative entropy function.

Let h : Rn → R be an α-strongly-convex function wrt ‖ · ‖. Then, we will use ∇(h) : Rn → Rn as
our mirror map. Thus, we will set θt = ∇h(xt), and x′t+1 = (∇h)−1(θt+1). See Figure 15.2.

Example 15.13. Recall function h1 is Example 15.11. We have ∇h1(x) = x, and (∇h1)−1(θ) = θ.

Example 15.13 gives a nice intuition why the gradient descent algorithm works within the primal
and dual space unnoticed.

Example 15.14. Consider function h2 in Example 15.12. We have ∇h2(x)i = (lnxi + 1)i, and
(∇h2)−1(θ)i = (eθi−1)i.

3

As mentioned before, the mirror descent algorithm is basically similar to gradient descent when we
are working in Rn normed with ‖ · ‖2, and when the mirror map is ∇h1. Hence, we will explain the
algorithm when we are on Rn normed with ‖ · ‖1 and mirror map ∇h2. For simplicity, we refer to
xt, x

′
t+1, xt+1, θt, and θt+1 by x, x′, x+, θ, and θ+, respectively.

(i) Start with x and compute θ = (lnxi + 1)i, i.e. map x to θ using the mirror map ∇h2 to the
dual space.

(ii) Set θ+ = (θ−η∇ft(x)) = (lnxi+1−η∇ft(x)i)i, i.e. take the gradient step in the dual space.

(iii) Find x′ = (eln θ
+
i −1)i = (elnxi−η(∇ft(x))i)i = (xi · e−η(∇ft(x))i))i, i.e. map θ+ back to the primal

space.

Remember Example 15.1 where ft(x) = 〈`t, x〉, in this case∇ft = `t, so the mirror descent algorithm
finds x′ = (xie

−η`i)i, which is similar to Hedge algorithm.

There is still one missing step in the algorithm:

(iv) Project x′ back to point x+ in the feasible region K.

In order to do this, we need to define Bregman distance.

Definition 15.15. The Bregman distance of x and y with respect to function h, denoted by
Dh(y‖x) is

h(y)− h(x)− 〈∇h(x), y − x〉.

Figure 15.3 describes the Bregman distance geometrically for h : R→ R.

Figure 15.3: Dh(y‖x) for function h : R→ R.

We can now define the notation of Bregman projection.

Definition 15.16. The Bregman projection of point x′ onto convex set K is

x+ = arg min
x∈K

Dh(x‖x′).

Example 15.17. Consider function h1(x) = 1
2‖x‖

2
2 from Example 15.11. Then

Dh1(y‖x) =
1

2
‖y‖22 −

1

2
‖x‖22 − 〈x, y − x〉

=
1

2
‖y‖22 +

1

2
‖x‖22 − 〈x, y〉

=
1

2
‖y − x‖22.

4

Therefore, when we apply the mirror descent algorithm with `2-norm and mirror function h1, the
projection step is exactly similar to the projection step in gradient descent. This is because for h1,
Bregman distance basically similar to the Euclidean distance.

Example 15.18. For function h2(x) =
∑n

i=1 xi lnxi from Example 15.12, we have

Dh2(y‖x) =

n∑
i=1

yi ln yi −
n∑
i=1

xi lnxi −
n∑
i=1

(lnxi + 1)(yi − xi)

= −
n∑
i=1

yi +

n∑
i=1

xi +

n∑
i=1

yi ln
yi
xi︸ ︷︷ ︸

KL(y‖x)

,

KL(y‖x) is known as the Kullback-Leibler divergence. Now in the case of `1-norm with mirror
map h2, step (iv) is

(iv) x+ = (
x′ie

η`i∑n
j=1 x

′
je
−η`j)i, i.e. take Bregman projection of x′ onto the feasible region (the unit

simplex ∆n) with respect to Bregman distance Dh2 .

4 Analysis

We prove the following theorem.

Theorem 15.19. Let f1, . . . , fT be convex and differentiable functions, ‖ · ‖ be a norm function,
and h be an α-strongly convex function with respect to ‖ · ‖, then the mirror descent algorithm
starting with x0 and taking constant step size η in every iteration, produces x1, . . . , xT such that

T∑
t=1

ft(xt) ≤
n∑
t=1

ft(x
∗) +

Dh(x∗‖x0)
η

+
η
∑T

t=1 ‖∇ft(xt)‖2∗
2α

, for all x∗ (15.3)

Before proving Theorem 15.19, let us take a look at Inequality 15.3 in the two cases we discussed
at length in the previous section.

If ‖ · ‖ is `2-norm and h is function h1 from Example 15.11, then Inequality 15.3 becomes

T∑
t=1

ft(xt) ≤
n∑
t=1

ft(x
∗) +

‖x∗ − x0‖22
2η

+
η
∑T

t=1 ‖∇ft(xt)‖22
2

, for all x∗,

which is Inequality 15.1.

If ‖ · ‖ is `1-norm and h is function h2 from Example 15.12, then Inequality 15.3 becomes

T∑
t=1

〈`t, xt〉 ≤
T∑
t=1

〈`t, x∗〉+

∑n
i=1 x

∗
i ln x∗

x0

2η
+
η
∑T

t=1 ‖`t‖2∞
2

, for all x∗ ∈ ∆n.

Since ‖`t‖∞ ≤ 1, we have

T∑
t=1

〈`t, xt〉 ≤
T∑
t=1

〈`t, x∗〉+
lnn

2η
+
ηT

2
, for all x∗ ∈ ∆n.

5

Proof of Theorem 15.19. Define potential Φt = Dh(x
∗‖xt)
η . The amortized cost at time t is

ft(xt)− ft(x∗) + (Φt+1 − Φt). (15.4)

Now

Φt+1 − Φt =
1

η

(
Dh(x∗‖xt+1)−Dh(x∗‖xt)

)
=

1

η

(
h(x∗)− h(xt+1)− 〈∇h(xt+1)︸ ︷︷ ︸

θt+1

, x∗ − xt+1〉 − h(x∗) + h(xt) + 〈∇h(xt)︸ ︷︷ ︸
θt

, x∗ − xt〉
)

=
1

η

(
h(xt)− h(xt+1)− 〈θt − η∇ft(xt)︸ ︷︷ ︸

∇t

, x∗ − xt+1〉+ 〈θt, x∗ − xt〉
)

=
1

η

(
h(xt)− h(xt+1)− 〈θt, xt − xt+1〉+ η〈∇t, x∗ − xt+1〉

)
≤ 1

η

(α
2
‖xt+1 − xt‖2 + η〈∇t, x∗ − xt+1〉

)
(By α-strong convexity of h wrt to ‖ · ‖)

Plug this back to 15.4

ft(xt)− ft(x∗) + (Φt+1 − Φt) ≤ ft(xt)− ft(x∗) +
α

2η
‖xt+1 − xt‖2 + 〈∇t, x∗ − xt+1〉

≤ ft(xt)− ft(x∗) + 〈∇t, x∗ − xt〉︸ ︷︷ ︸
≤ 0 by convexity of ft

+
α

2η
‖xt+1 − xt‖2 + 〈∇t, xt − xt+1〉

≤ α

2η
‖xt+1 − xt‖2 + ‖∇t‖∗‖xt − xt+1‖ (By Corollary 15.5)

≤ α

2η
‖xt+1 − xt‖2 +

1

2

(η
α
‖∇t‖2∗ +

α

η
‖xt − xt+1‖2

)
(By AM-GM)

≤ η

2α
‖∇t‖2∗.

Thus,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤ Φ0 − ΦT+1 +

T∑
t=1

η

2α
‖∇t‖2∗

≤ Φ0 +

T∑
t=1

η

2α
‖∇t‖2∗

≤ Dh(x∗‖x0
η

+
η
∑T

t=1 ‖∇t‖2∗
2α

.

5 Mirror Descent as Prox version of Gradient Descent

In this lecture, we reviewed mirror descent algorithm as a gradient descent scheme where we do
the gradient step in the dual space. A shorter (but less intuitive) description of mirror descent in
the following.

6

Algorithm 1 Mirror Descent Algorithm

for t← 0 to T − 1 do
xt+1 ← arg minx∈K{η〈∇ft(xt), x〉+Dh(x‖xt)}

References

[Bub15] Sébastien Bubeck, Convex optimization: Algorithms and complexity, Found. Trends Mach.
Learn. 8 (2015), no. 3-4, 231–357.

[NY78] Arkadi Nemirovski and D. Yudin, On cesaros convergence of the gradient descent method
for finding saddle points of convex-concave functions, Daklady Akademii Nauk SSSR 239
(1978), no. 4, 291–307. 3

7

	Introduction
	Norms and their Duals
	Online Mirror Descent
	Analysis
	Mirror Descent as Prox version of Gradient Descent

