
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #16: Gradient Descent February 22, 2017
Lecturer: Anupam Gupta Scribe: Guru Guruganesh, Ziv Scully

In this lecture, we will study the gradient descent algorithm and analyze it in the context of convex
optimization.

1 Preliminaries

First, recall the following definitions:

Definition 16.1 (Convex Set). A set K ⊆ Rn is convex iff(
λx+ (1− λ)y

)
∈ K ∀x, y ∈ K, ∀λ ∈ [0, 1].

Definition 16.2 (Convex Function). A function f : Rn → R is convex iff

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ Rn, ∀λ ∈ [0, 1].

In the context of this lecture, we will always assume that the function f is differentiable.

Fact 16.3 (First-Order condition). A function f is convex iff ∀x, y f(y) ≥ f(x) + 〈∇f(x), y − x〉

Geometrically, Fact 16.3 states that the function always lies above its tangent (see Fig 16.1).

Figure 16.1: The blue line denotes the function and the red line is the tangent at x. [VT]

If the function f is also twice differentiable, then we denote by ∇2f its matrix of second derivatives

(a.k.a. its Hessian), where (∇2f)i,j := ∂2f
∂xi∂xj

.

Fact 16.4 (Second-order condition). A twice-differentiable function f is convex iff ∇2f � 0. 1

Definition 16.5 (Lipschitz). Function f : Rn → R is G-Lipschitz with respect to the norm ‖ · ‖ if

|f(x)− f(y)| ≤ G ‖x− y‖ ∀x, y ∈ Rn.

For today, we will only work with the `2-norm ‖ · ‖2.

Fact 16.6. A differentiable function f is G-Lipschitz w.r.t. ‖ · ‖2 iff ‖∇f(x)‖2 ≤ G for all x ∈ Rn.

1The notation A � B signifies A−B is positive semidefinite; the ordering given by � is called the Löwner ordering.

1

2 Convex Minimization and Gradient Descent

There are two kinds of problems that we will study.

1. Unconstrained Convex Minimization (UCM): Given a convex function f , find

min
x∈Rn

f(x).

2. Constrained Convex Minimization (CCM): Given a convex function f and convex set K, find

min
x∈K

f(x).

This is a more general problem, since setting K = Rn gives us the unconstrained case.

2.1 Unconstrained Convex Minimization

One useful property of convex functions is that f is convex implies that all local minima are also
global minima. Hence, solving

∇f(x) = 0

would enable us to compute the global minima exactly. Quite often, it is not possible to solve
∇f = 0. For instance, the function f may not be given explicitly, but we may be given an oracle
to compute gradients at any point. Or even when we can write down and solve ∇f = 0, it may be
too expensive, and gradient descent may be a faster way to get better. One example is in solving
linear systems: when f(x) = 1

2x
ᵀAx− bx, we have that ∇f(x) = 0 ⇐⇒ Ax = b ⇐⇒ x = A−1b,

which can be solved in O(nω) (i.e., matrix-multiplication) time—but for “nice” matrices A we may
want to approximate a solution much faster.

However, we can still iteratively approximate the optimal solution x∗. The main idea is simple:
the gradient tells us the direction of steepest increase, so to decrease the fastest we’d like to move
opposite to the direction of the gradient. Of course, we’d like to take an infinitesimal step in this
negative gradient direction, recompute the gradient, etc. To make this a finite algorithm, we define
a step size ηt, and hope that changing our current point x by −ηt∇f(x) decreases the function
value. This gives us the classical gradient descent algorithm.2

Algorithm 1: Gradient Descent
x0 ← starting point;
for t← 0 to T − 1 do

xt+1 ← xt − ηt · ∇f(xt);
end

Result: x̂ = 1
T

∑T−1
t=0 xi

Some comments: in 2-dimensions, this is easy to visualize, since we can draw the level sets of
the function f , and the gradient at a point is the normal to the tangent line at that point. The
algorithm’s path may be a zig-zagging walk towards the optimum goal (see Fig 16.2).

Theorem 16.7. For any convex, G-Lipschitz function f : Rn → R, if ‖x∗ − x0‖ ≤ D, then

f(x̂)− f(x∗) ≤ ε if we set T =
(
GD
ε

)2
and ηt = η = ε

G2 .

We will use the following elementary fact in the proof

〈a, b〉 =
1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
(16.1)

2We have defined neither the start point x0 nor the step sizes ηt, but we will fix that soon.

2

Figure 16.2: The yellow lines denote the level sets of the function f and the red walk denotes the
steps of gradient descent. [Com06]

Proof. We will use a potential

Φt =
1

2η
‖xt − x∗‖2 , (16.2)

which is positive for all t. We will soon show that, for some upper bound B,

f(xt)− f(x∗) + Φt+1 − Φt ≤ B. (16.3)

Before we prove this, let us see what this implies. Using convexity of f and averaging the above
over all t, we get

f(x̂)− f(x∗) = f

(
1

T

T−1∑
t=0

xt

)
− f(x∗) by definition of x̂

≤ 1

T

T−1∑
t=0

(f(xt)− f(x∗)) because f is convex

≤ B +
1

T
(Φ0 − ΦT) average (16.3), the Φt terms telescope

≤ B +
D2

2ηT
= B +

D2

2ηT
drop −ΦT and expand Φ0. (16.4)

Now we just need to compute B. The potentials use differences of the form xt − x∗. The key is to
express as much as possible in terms of xt+1 − xt, because

xt+1 − xt = −η∇f(xt). (16.5)

by the definition of the algorithm.

f(xt)− f(x∗) + Φt+1 − Φt

= f(xt)− f(x∗) +
1

2η
(‖xt+1 − x∗‖2 − ‖xt − x∗‖2) (16.6)

= f(xt)− f(x∗) +
1

2η
(2 〈xt+1 − xt, xt − x∗〉+ ‖xt+1 − xt‖2) use (16.1)

= f(xt)− f(x∗)− 〈∇f(xt), xt − x∗〉+
η

2
‖∇f(xt)‖2 use (16.5)

≤ 0 +
η

2
‖∇f(xt)‖2 Convexity and Fact 16.3

≤ ηG2

2
f is G-Lipschitz.

3

Putting it together with (16.4), we have

f(x̂)− f(x∗) ≤ 1

2

(
ηG2 +

D2

ηT

)
.

We want this to be at most ε, so we definitely need η = O
(
ε
G2

)
. It is simple to verify that η = ε

G2

and T = D2

εη =
(
GD
ε

)2
suffices.

This analysis, and in particular the 1/ε2 dependence on ε is tight if we just assume f is G-Lipschitz.
Moreover, we did not (and cannot) show that x̂ is close in distance to x∗; we just show that
f(x̂) ≈ f(x∗). Indeed, if the function is very flat close to the origin, we cannot hope to be close in
distance. (To improve on the 1/ε2 dependence, or to show physical closeness of x∗ and x̂, we need
further assumptions; see Section 4.)

2.2 Constrained Convex Minimization

Unlike the unconstrained case, now the derivative may not be 0 at the optimum. Nonetheless, the
main idea of gradient descent still yields a good algorithm. Here is some intuition why. When f is
convex, its local optima are global optima, and

x∗ is a local minimum ⇔ ∇f(x∗) = 0 ⇔ ∀y ∈ Rn, 〈∇f(x∗), y − x∗〉 ≥ 0.

(The rightmost property is essentially that 〈a, b〉 = 0 for all b if and only if a = 0.)

When we constrain our domain to convex setK, the minimum may not have gradient zero. However,
if the minimum doesn’t have gradient zero, it’s on the boundary of K. Either way, we can show
that x∗ is a local minimum iff

〈∇f(x∗), y − x∗〉 ≥ 0 ∀y ∈ K.

When x∗ is in the interior of K, this is equivalent to ∇f(x∗) = 0, but this is not so when x∗ is on the
boundary of K because we can’t “test every direction’s dot product”. Here’s another interpretation
of the statement: starting from x∗, if we walk a little bit in some direction but stay in K, then f
should increase. This means stepping in the reverse direction of the gradient is still a good idea!

2.2.1 Projected Gradient Descent

We need change our algorithm to ensure that the new point xt+1 lies within K. To ensure this, we
simply project each step back onto K. Let ΠK : Rn → K be defined as

ΠK(y) = arg min
x∈K

‖x− y‖ .

The modified algorithm is given below in Algorithm 2, with the changes highlighted in blue.

Algorithm 2: Gradient Descent For CCM
x0 ← starting point;
for t← 0 to T − 1 do

x′t+1 ← xt − ηt · ∇f(xt);
xt+1 ← ΠK(x′t+1);

end

Result: x̂ = 1
T

∑T−1
t=0 xi

We will show below that a theorem (and analysis) similar to that of Theorem 16.7 holds.

4

Theorem 16.8. Given a convex set K with diameter D and any convex function f : Rn → R with
∀x ∈ Rn ‖∇f(x)‖2 ≤ G and suppose x0 ∈ K then f(x̂) − f(x∗) ≤ ε if we set T =

(
GD
ε

)2
and

ηt = ε
G2 .

Proof. The argument is essentially the same as that for Theorem 16.7. The only hiccup is that
now −η∇f(xt) = x′t+1 − x∗, not xt+1 − x∗. But this is okay: if we could replace xt+1 with x′t+1 in
(16.6), we would be all set. This boils down to showing∥∥x′t+1 − x∗

∥∥ ≥ ‖xt+1 − x∗‖ .

But this is easy, because xt+1 = ΠK(x′t+1) and x∗ ∈ K. Because K is convex, projecting to it gets
us closer to every point in K, in particular to x∗. This is because the angle x∗ → ΠK(x′t+1)→ x′t+1

cannot be acute: if it were acute, we could show that K wasn’t actually convex.

3 Online Gradient Descent, and Relationship with MW

We considered Gradient Descent for the offline convex minimization problem, but one can use it
even when the function changes over time. Indeed, consider the online convex optimization (OCO)
problem: at each time step, you propose an xt ∈ K and an adversary exhibits a function ft : K → R
with ‖∇ft‖ ≤ G. The cost of each time step is ft(xt) and your objective is to minimize

regret =
∑
t

ft(xt)− min
x∗∈K

∑
t

ft(x
∗).

To solve this problem, we can use the same algorithm, with one natural modification: the update
rule is now taken with respect to gradient of the current function ft.

xt+1 ← xt − η · ∇ft(xt).

Looking back at the proof in Section 2, the inequality (16.3) immediately extends to give us

ft(xt)− ft(x∗) + Φt+1 − Φt ≤ B.

Now summing this over all times t gives

T−1∑
t=0

(
ft(xt)− ft(x∗)

)
≤ Φ0 +BT = Φ0 + ηTG2/2,

and using T ≥
(
DG
ε

)2
and η = ε

G2 as above, this implies

1

T

T∑
t=0

(
ft(xt)− ft(x∗)

)
≤ DG√

T
≤ ε.

One advantage of this algorithm (and analysis) is that it holds for all convex bodies K and all convex
functions, as opposed to the MW algorithm which, as stated, works just for the unit simplex and
linear losses. Of course it now depends on D (which, in the worst case is the diameter of K), and
G (which is related to the class of functions). If we consider these quantities G,D as constants, the
(1
ε2

) dependence is the same.

In many cases we do care about the fine-grained dependence on K and functions, so let’s compare
the two for the unit simplex and linear lossses (i.e., functions ft(x) = 〈`t, x〉 with ‖`‖∞ = 1). The
regret bound above give us T = 2N

ε2
because D ≤ diam(K) =

√
2 and ‖∇li‖2 ≤

√
N . This is much

worse compared to T = logN
ε2

, which is the guarantee that multiplicative weights provides.

The problem, at a high level, is that we are “choosing the wrong norm”: we are working in `2
instead of `1. In the next lecture we will see what this means, and how this dependence on N be
improved via the Mirror Descent framework.

5

3.1 Subgradients

What if the convex function f is not differentiable? Staring at the proofs above, all we need is the
following:

Definition 16.9 (Subgradient). A vector zx is called a subgradient at point x if

f(y) ≥ f(x) + 〈zx, y − x〉 ∀y ∈ Rn.

Now we can use subgradients at the point x wherever we used ∇f(x), and the entire proof goes
through. In some cases, an approximate subgradient may also suffice.

4 Stronger Assumptions

If the function f is better-behaved, then we can improve the guarantees for gradient descent in
two ways: we can reduce the dependence on ε, and we can weaken (or remove) the dependence on
parameters G,D. There are two standard assumptions one can make on the convex function: that
it is “not too flat” (captured by the idea of strong convexity), and it is not “not too curved” (i.e.,
it is smooth). We now use these assumptions to improve guarantees.

4.1 α-strongly convex functions

Definition 16.10 (Strong Convexity). A function is α-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖x− y‖2 for all x, y ∈ K (16.7)

Fact 16.11. A twice-differentiable convex function f is α-strongly convex if and only if ∇2f � αI.

In this case, the gradient descent algorithm with step size ηt = O
(

1
αt

)
converges to a solution with

error ε in T = O(G
2

αε) Put proof!

4.2 β-smooth function

Definition 16.12. A function f is a β-smooth convex function if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖x− y‖2 for all x, y ∈ K (16.8)

Fact 16.13. A twice-differentiable convex function f is β-smooth if and only if ⇔ ∇2f � βI.

In this case, the gradient descent algorithm with step size ηt = O
(
1
β

)
yields an x̂ which satisfies

f(x̂)− f(x∗) ≤ ε when T = O(Dβε).

In the smoothness definition (16.8), plug in x = xt and y = xt+1 = xt − η∇f(xt) to get

f(xt+1) ≤ f(xt)− η‖∇f(xt)‖2 + η2
β

2
‖∇f(xt)‖2.

The RHS is minimized by setting η = 1
β , when we get

f(xt+1)− f(xt) ≤ −
1

2β
‖∇f(xt)‖2. (16.9)

So the improvement is large when the gradients are large too. Finish proof!

6

4.3 Well-conditioned Functions

Functions that are both β-smooth and α-strongly convex are known as “well-conditioned” functions,
with condition number κ = β/α. From the facts above, the condition number is the ratio of
the largest to the smallest eigenvalue of the Hessian ∇2f . In this case, we get a much stronger
convergence—ε-closeness in time T = O(log 1

ε).3

Theorem 16.14. For a function f which is β-smooth and α-strongly convex, let x∗ be the solution
to the unconstrained convex minimization problem arg minx∈Rn f(x). Then running gradient descent
with ηt = 1/β gives

f(xt)− f(x∗) ≤ β

2
exp

(−t
κ

)
‖x0 − x∗‖2 .

Proof. For α-strongly-convex f , we can use its definition (16.7) to get:

f(xt)− f(x∗) ≤ 〈∇f(xt), xt − x∗〉 −
α

2
‖xt − x∗‖2

≤ ‖∇f(xt)‖ ‖xt − x∗‖ −
α

2
‖xt − x∗‖2

≤ 1

2α
‖∇f(xt)‖2 (16.10)

where we use that the RHS is maximized when ‖xt − x∗‖ = ‖∇f(xt)‖ /α. Now combining with (16.9)
we have that

f(xt+1)− f(xt) ≤ −
α

β

(
f(xt)− f(x∗)

)
, (16.11)

or setting ∆t = f(xt)− f(x∗) and rearranging, we get

∆t+1 ≤ (1− α

β
)∆t ≤ (1− 1/κ)t∆0 ≤ exp(−t/κ) ·∆0.

We can control the value of ∆0 by using (16.8) in x = x∗, y = x0; since ∇f(x∗) = 0, get ∆0 =

f(x0)− f(x∗) ≤ β
2 ‖x0 − x

∗‖2 ≤ βD2

2 .

Well-conditioned (and strongly-convex) functions have the good property that closeness in function
value implies pointwise closeness: intuitively, since the function is curving at least quadratically,
the function values at points far from the minimizer must be significant. Formally, use (16.7) with
x = x∗, y = xt and the fact that ∇f(x∗) = 0 to get

‖xt − x∗‖2 ≤
2

α
(f(xt)− f(x∗)).

References

[Com06] Wikimedia Commons. Gradient ascent(countour), 2006. Available at
http://en.wikipedia.org/wiki/Gradientdescent#/media/File:Gradientascent(contour).png. 16.2

[VT] Nisheeth Vishnoi and Jakub Tarnawski. Fundamentals of convex optimization. lecture 1 basics,
gradient descent and its variants. Available at http://tcs.epfl.ch/files/content/sites/tcs/
files/Lec1-Fall14-Ver1.pdf. 16.1

3In the numerical analysis literature this is called linear convergence, since the number of iterations increases
linearly in the number of bits of accuracy—i.e., to decrease ε by a factor of 2 we need to run only for a “constant”
number of extra iterations.

7

http://tcs.epfl.ch/files/content/sites/tcs/files/Lec1-Fall14-Ver1.pdf
http://tcs.epfl.ch/files/content/sites/tcs/files/Lec1-Fall14-Ver1.pdf

	Preliminaries
	Convex Minimization and Gradient Descent
	Unconstrained Convex Minimization
	Constrained Convex Minimization
	Projected Gradient Descent

	Online Gradient Descent, and Relationship with MW
	Subgradients

	Stronger Assumptions
	-strongly convex functions
	-smooth function
	Well-conditioned Functions

