
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #29: Smoothed Complexity Apr 2015, Feb 2016
Lecturer: Anupam Gupta Scribe: Melanie Schmidt, Goran Zuzic

1 Introduction

Smoothed analysis originates from a very influential paper of Spielman and Teng [ST01, ST04]. It
provides an alternative to worst-case analysis. Assume that we want to analyze an algorithm’s cost,
e.g., the running time of an algorithm. Let cost(A(I)) be the cost that the algorithm has for input
instance I. We will usually group the possible input instances according to their “size” (depending
on the problem, this might be the number of jobs, vertices, variables and so on). Let In be the set
of all inputs of ‘size’ n. For a worst case analysis, we are now interested in

max
I∈In

cost(A(I)),

the maximum cost for any input of size n. Consider Figure 29.1 and imagine that all instances of
size n are lined up on the x-axis. The blue line could be the running time of an algorithm that is
fast for most inputs but very slow for a small number of instances. The worst case is the height of
the tallest peak. For the green curve, which could for example be the running time of a dynamic
programming algorithm, the worst case is a tight bound since all instances induce the same cost.

Figure 29.1: An example of a cost function with outliers.

Worst case analysis provides a bound that is true for all instances, but it might be very loose for
some or most instances like it happens for the blue curve. When running the algorithm on real
world data sets, the worst case instances might not occur, and there are different approaches to
provide a more realistic analysis.

The idea behind smoothed analysis is to analyze how an algorithm acts on data that is jittered by
a bit of random noise (notice that for real world data, we might have a bit of noise anyway). This
is modeled by defining a notion of ‘neighborhood’ for instances and then analyzing the expected
cost of an instance from the neighborhood of I instead of the running time of I.

The choice of the neighborhood is problem specific. We assume that the neighborhood of I is given
in form of a probability distribution over all instances in In. Thus, it is allowed that all instances
in In are in the neighborhood but their influence will be different. The distribution depends on
a parameter σ that says how much the input shall be jittered. We denote the neighborhood of I
parameterized on σ by neighborhoodσ(I). Then the smoothed complexity is given by

max
I∈In

EI′∼neighborhoodσ(I)[cost(A(I ′))]

1



In Figure 29.1, we indicate the neighborhood of one of the peak instances by the red brackets
(imagine that the distribution is zero outside of the brackets – we will see one case of this in
Section 4). The cost is smoothed within this area. For small σ, the bad instances get more isolated
so that they dominate the expected value for their neighborhood, for larger σ, their influence
decreases. We want the neighborhood to be big enough to smooth out the bad instances.

So far, we have mostly talked about the intuition behind smoothed analysis. The method has a
lot of flexibility since the neighborhood can be defined individually for the analysis of each specific
problem. We will see two examples in the following sections.

2 Traveling Salesman Problem - Lin-Kernighan Heuristic

The traveling salesman problem (TSP) is a classic example of an NP-complete problems with
practical importance.

Problem (TSP) Given a undirected weighted graph with (symmetric) edge weights wij = wji ∈
[0, 1], find the minimum weighted cycle that contains all vertices.

On metric spaces there exists a polynomial 1.5-approximation algorithm [Chr76] and on a d-
dimensional Euclidean spaces (for fixed d) there are 1 + ε polynomial-time approximation schemes
time [Aro98].

One of the best and most popular heuristics that works particularly well on the TSP problem is
the Lin-Kernighan Heuristic [LK73].

Heuristic of Lin-Kernighan Start with an arbitrary cycle (i.e. a random permutation of
vertices). In each iteration find two pairs of adjacent vertices (a, b) and (c, d) (i.e. a→ b and c→ d
are edges in the cycle) and consider a new candidate cycle obtained by removing edges a→ b and
c→ d as well as inserting edges a→ c and b→ d. See Figure 29.2. If the new candidate cycle has
smaller weight than the current cycle, replace the current cycle with the candidate one and repeat
the heuristic. If no quadruplet (a, b, c, d) can decrease the weight, end the algorithm and report the
final cycle.

a b

cd
Figure 29.2: Main step of the Lin-Kernighan heuristic: a→ b, c→ d are replaced by a→ c, b→ d.
The path b→ . . .→ c is also reversed.

It is useful to note that the Lin-Kernighan always terminates since there at finite number of cycles

2



(exactly (n− 1)! distinct ones) and each iteration strictly decreases the weight. However, there are
examples on which the heuristic takes Ω(exp(n)) time as well as examples where it achieves value
of Ω( logn

log logn) ·OPT . However, the heuristic performs well in practice, which might be explained by
smooth analysis [ERV07].

Smooth Analysis We set up the probability space by sampling each wij ∈ [0, 1] from a inde-
pendent distribution with probability density functions fij(x) (note that the distributions can be
different for different edges). The densities are bounded by 1

σ , i.e. fij(x) ≤ 1
σ for all i, j, x. The

density can be otherwise completely arbitrary can chosen by the adversary. We will prove that
the expected number of iterations taken by the Lin-Kernighan is poly(n, 1σ ). This is achieved by
upper-bounding the probability that the algorithm takes more than t iterations via the formula

E[X] =
∞∑
t=1

Pr[X ≥ t]

=

(n−1)!∑
t=1

Pr[X ≥ t]. (29.1)

Note that the (n − 1)! represents the maximum possible number of iterations the algorithm can
take. The bound takes into account that a big number of iterations t implies there was an iteration
where the decrease in weight was very small (albeit positive), which is an event of low probability.

Lemma 29.1. The probability that there was an iteration where the improvement (decrease in cycle

weight) was (0, ε] is at most n4ε
σ .

Proof. Fix a quadruplet (a, b, c, d). We upper-bound the probability that the (0, ε] improvement
was obtained by replacing a → b, c → d with a → c, b → d. The decrease in weight resulting
from this replacement is −wbd−wac +wab +wcd ∈ (0, ε]. By conditioning on wbd, wac, wab, the last
unconditioned value wcd must lie in some interval (L,L+ ε]. By the hypothesis on the distribution
density, this can happen with probability at most ε

σ , leading us to conclude that for a fixed (a, b, c, d)
the probability of such an event is at most ε

σ .

By union-bounding over all n4 quadruplets (a, b, c, d) we can bound the probability by n4ε
σ .

Lemma 29.2. The probability that the algorithm takes at least t iterations is at most n5

tσ .

Proof. Note that wij ∈ [0, 1] implies that the weight of any cycle is in [0, n]. This implies by
pigeonhole principle that there was an iteration where the decrease in weight was at most ε := n

t .

By Lemma 29.1 the probability of this event is at most n5

tσ , as advertised.

Theorem 29.3. The expected number of iterations that the algorithm takes is at most O
(
n6 logn

σ

)
.

3



Proof. Using Equation 29.1 and Lemma 29.2 we have:

E[X] =

(n−1)!∑
t=1

Pr[X ≥ t]

≤
(n−1)!∑
t=1

n5

tσ

=
n5

σ

(n−1)!∑
t=1

1

t

= O

(
n6 log n

σ

)
Here we used the fact that

∑N
t=1

1
t = O(logN) and O(log(n− 1)!) = O(n log n).

3 Smoothed complexity of the simplex algorithm

We now turn our attention to the glorified simplex algorithm for solving general linear pro-
grams [Dan48, Dan51]. Given a vector c ∈ Rd and a matrix A ∈ Rn×d, it finds values for d
variables x1, . . . , xd stored in a d-dimensional vector x = (x1, . . . , xd)

T that optimize

max cTx

Ax ≤ 1.

The algorithm iterates through solutions that correspond to vertices of the feasible solution poly-
hedron until it finds an optimal solution or detects that the linear program is unbounded. It always
goes from a solution to one of at least the same value. In case of ties, a pivot rule decides to which
solution the algorithm goes. Many pivot rules have been proposed. For most of them, it was shown
that there are inputs where the simplex method iterates through an exponential number of vertices
and thus has exponential running time. No pivot rule is proven to lead to a polynomial algorithm.
However, the simplex method is widely used to solve linear programs.

In their seminal paper, Spielman and Teng show that the simplex algorithm has a polynomial
smoothed complexity for a specific pivot rule, the “shadow vertex pivot rule” that will be described
later. More precisely, they have shown that the simplex method with this pivot rule provides a
polynomial algorithm for the following problem1:

Input: vector c ∈ Rd, matrix A ∈ Rn×d

Problem: For a random matrix G ∈ Rn×d and a random vector g ∈ Rn where all entries are
chosen independently from a Gaussian distribution N (0,maxi ||ai||2), solve the following LP:

max cTx

(A+G)x ≤ 1 + g.

This is one specific neighborhood model. Notice that for any input (A, c,1), all inputs (A+G, c,1, g)
are potential neighbors, but the probability decreases exponentially when we go ‘further away’ from

1They consider even more general problems, where the right hand side value could be some b instead of 1.

4



the original input. The vector c is not changed, only A and 1 are jittered. The variance of the
Gaussian distributions scales with the smoothness parameter σ. For σ = 0, the problem reduces to
the standard linear programming problem and the analysis becomes a worst case analysis.

Notice that randomly jittering A and 1 means that the feasibility of the linear program can be
switched (from feasible to infeasible or vice versa). Thus, jittering the instance and then solving
the LP does not necessarily give any solution for the original LP. However, assuming that the input
comes from an appropriate noisy source, the following theorem gives a polynomial running time
bound.

Theorem 29.4 ([ST04]). The ‘smoothed’ number of simplex steps executed by the simplex algorithm
with the shadow vertex pivot rule is bounded by poly(n, d, 1/σ) for the smoothed analysis model
described above.

The original result bounded the number of steps by O((nd/σ)O(1)), but the exponents were some-
what large. Vershynin [Ver09] proved an improved bound of O(log7 n(d9 + d3/σ4)).

Shadow Vertex Pivot Rule We conclude this section with an informal description of the shadow
vertex pivot rule. Consider Figure 29.3. The three-dimensional polytope stands for the polyhedron
of all feasible solutions, which is in general d-dimensional. The vector c points in the direction in
which we want to maximize (it is plotted with an offset to emphasize the optimal vertex). The
shadow pivot rule projects the polyhedron to a two-dimensional space spanned by c and the starting
vertex u.

Assume that the original LP has an optimal solution with finite objective value. Then the polyhe-
dron must be bounded in the direction of c. It is also bounded in the direction of u since the start
vertex u is optimal for the direction u.

c̄
ū

start vertex

optimum

Figure 29.3: Illustration of the shadow vertex pivot rule.

After projecting the polyhedron we intuitively follow the vertices that lie on the convex hull of the

5



projection (moving towards the direction of c)2. Notice that the extreme vertex on the c-axis is
the projection of an optimal vertex of the original polyhedron.

Since the polyhedron of all feasible solutions is not known, the projection cannot be done upfront.
Instead, in each step, the algorithm projects the vectors to the neighbor vertices onto span{c, u}
and identifies the neighbor which is the next on the convex hull.

A first step towards proving the result is to show that the shadow has a small number of vertices
if the polyhedron (A+G)x ≤ (1 + g) is projected onto two fixed vectors u and c. The real result
for simplex, however, is complicated by the fact that the vector u depends on the polyhedron and
on the starting vertex, and so the polyhedron is projected to a subspace that is correlated to the
polyhedron itself. Another complication: finding a starting vertex is as hard as solving an LP.
Spielman and Teng handle these and other issues; see the original publication [ST04] or in [Lic13].

4 The Nemhauser-Ullman algorithm for the knapsack problem

Now let’s turn to a problem for which we will give (almost) all the details of the smoothed
analysis. The knapsack problem is given the size/weight w = (w1, ..., wn) ∈ Rn≥0 and the profit

p = (p1, ..., pn) ∈ Rn≥0 of n objects. The problem is to find a subset s ∈ 2[n] that maximizes the

profit pT s while satisfying wT s ≤ g for a knapsack size of g ∈ R≥0.

Example 29.5. With p = (1, 2, 3), w = (2, 4, 5) and g = 10, the optimal solution is x = (0, 1, 1)
with pTx = 5 and wTx = 9.

The knapsack problem is weakly NP-hard – it can be solved by dynamic programming. Notice that
perturbing the input by a real number prohibits the standard dynamic programming approach
which assumes integral input. Therefore we show a smoothed analysis for a different algorithm
below. The result is by Beier, Röglin and Vöcking [BV03, BRV07].

4.1 The smoothness model

One natural neighborhood is to smooth each weight wi uniformly over an interval of width σ
centered at wi. Figure 29.4 illustrates this. Within the interval, the density function is uniform,
outside of the interval, it is zero. The profits are not perturbed.

0 = w0
w1 w2

σ σ σ

Figure 29.4: Distributions for three weights plotted into the same diagram.

We choose a slightly more general model: The profits are fixed (chosen by the adversary), while
the weights are chosen randomly and independently. The weight wi is sampled from a distribution
fi : [0, 1] → [0, 1/σ], where the distribution can be different for different i and is chosen by the
adversary. The important thing here is that the distribution is bounded by 1

σ and our complexity
will polynomially depend on this value. Note that we made a simplifying assumption that weights

2The two-dimensional projection is called the shadow of the original polyhedron, hence the name of the pivot rule.

6



are in [0, 1] to make our lives easier although it can be avoided [BRV07]. We also assume that
it never happens that two solutions get exactly the same weight. This is justified since this is an
event with zero probability, so it is almost surely not the case.

4.2 The Nemhauser-Ullman algorithm

The Nemhauser-Ullman algorithm [NU69] for the knapsack problem computes the Pareto curve and
returns the best solution from the curve. Recall that the Pareto curve for the knapsack problem is
defined as follows.

Definition 29.6. Given two knapsack solutions x1 and x2 we say that “x1 is dominated by x2”
if wTx1 ≥ wTx2 and pTx1 ≤ pTx2. The “Pareto curve” is defined as the set of all non-dominated
solutions (from a particular set of solutions). We also call the points on the curve “Pareto optimal”.

sum of weights wTx

su
m

of
p

ro
fi

ts
p
T
x

sum of weights wTx

su
m

of
p

ro
fi

ts
p
T
x

Figure 29.5: Left side: A point set and its Pareto curve. The blue points form the Pareto curve. They
belong to the curve because the areas indicated by the black lines does not contain points. For the third
point on the curve, this area is specifically highlighted. Right side: Worst Case.

The definition is visualized in Figure 29.5. Note that the optimal solution is always on the Pareto
curve. We introduce the notation x[i..j] = (xi, xi+1, ..., xj). The Pareto curve can be computed
iteratively. Let P (j) be the set of all Pareto optimal solutions when we are only allowed to use the
first j items. Then P (0) = {(0, 0, ..., 0)} and

P (j + 1) ⊆ P (j) ∪Aj
Aj := {x | x[1..j] ∈ P (j)[1..j], xj+1 = 1, xj+1..n = (0, .., 0)}.

The above relation says that P (j + 1) can be easily computed from P (j). In other words, a
dominated solution by P (j) will still be dominated in P (j + 1), so it can be safely forgotten.

If we keep the elements of P (j) in sorted order with regard to the weights, then P (j + 1) can
be computed in linear time by merging them together. Note that P (j) and Aj are naturally
constructed in increasing-weight order. Then we merge them in parallel (using the technique from
merge-sort) and eliminate dominated points on the fly. The result is P (j + 1) with points stored
in increasing-weight order. This technique leads to the following Lemma.

7



Lemma 29.7. The Nemhauser-Ullman algorithm can be implemented to have a running time of
O(
∑n

i=1 |P (j)|) = O(n ·maxj∈[n] E |P (j)|) in expectation.

Note that for this analysis we no longer care about the size of the knapsack g. The remainder of
the section will be focused on bounding E[|P (j)|].

4.3 Bounding Expected Size of Pareto Curve

In the worst-case it is possible that all 2n solutions are Pareto optimal. (Exercise: put wi = 2i, pi =
2i) In this case, the Nemhauser-Ullman algorithm will take exponential time. However, we will see
that the expected size of P (j) is polynomial for all j ∈ [n] if the instance is σ-smoothed.

sum of the weights

su
m

of
th

e
p

ro
fi

ts

ε

Figure 29.6: Dividing into stripes of width ε = 1/k.

Fix any j ∈ [n], and let P := P (j). The proof idea is to partition the interval [0,∞] of weights
into stripes of decreasing width ε := 1/k for an integer k and then to count the number of Pareto
optimal solutions in each stripe. See Figure 29.6. There is always an ε > 0 that is small enough
such that each stripe contains at most one point from P (since we assumed no two solutions have
the same weight). Denote by P ∩ [a, b] the set of all Pareto optimal solutions that have weight in
the range [a, b]. Thus,

|P | = 1 + lim
k→∞

∞∑
`=0

1

(
P ∩

( `
k
,
`+ 1

k

]
6= ∅
)
.

We want to restrict the number of terms in the sum. Since the knapsack has size g, we can ignore
all solutions that weight more than g. However, g might still be large. By our simplification, we
know that all weights are at most 1. Thus, no solution can weight more than n and it is thus
sufficient to consider the interval [0, n]. The kn stripes at (0, 1/k], (1/k, 2/k], . . . , (n(k−1)/k, nk/k]
fit into this interval. We thus get that

E[|P |] ≤ 1 + lim
k→∞

nk∑
`=0

Pr

(
P ∩

( `
k
,
`+ 1

k

]
6= ∅
)

(29.2)

Now we have to bound the probability that there is a point from P in the interval ( `k ,
`+1
k ]. The

following Lemma establishes this.

8



Lemma 29.8. For any t ≥ 0 it holds that Pr (P ∩ (t, t+ ε] 6= ∅) ≤ nε
σ .

Proof. Define xR to be the leftmost point right of t that is on the Pareto curve.

xR :=

{
arg minx∈P {pTx | wTx > t} if the set is nonempty

⊥ else

We define ∆ to be the distance between t and xR:

∆ :=

{
wTxR − t xR 6= ⊥
∞ otherwise

(See Figure 29.7 for a visualization.) Clearly:

P ∩
(
t, t+ ε

]
6= ∅ ⇐⇒ ∆ ∈ (0, ε]

The rest of the proof shows that Pr
(
∆ ∈ (0, ε]

)
is small.

It is difficult to directly argue about ∆, so we use a set of auxiliary random variables which make
the proof clean. For any item i ∈ [n] we define several random variables: let xUL,−i be the most
profitable (highest) point left of t without the item i; and let x∗,+i be the leftmost (least weight)
point that is higher than xUL,−i and contains i. Formally:

xUL,−i := arg max
x∈2[n]

{pTx | wTx ≤ t, xi = 0}

x∗,+i := arg min
x∈2[n]

{wTx | pTx ≥ ptxUL,−i, xi = 1}

sum of the weights

su
m

of
th

e
p

ro
fi

ts

ε

xUL
xR

sum of the weights

su
m

o
f

th
e

p
ro

fi
ts

∆

ε

xUL
xR

Figure 29.7: Illustration of the definition of xUL and xR. ∆ is only plotted in the right figure.

The reason for defining these variables is that (i) it is easy to bound the probability that x∗,+i has
weight within an interval (t, t+ ε] and (ii) we will later show that xR = x∗,+i for some i. With this
reason in mind we define ∆i = x∗,+i − t (∞ if undefined).

9



Subclaim For any item i ∈ [n] it holds that Pr
[
wTx∗,+i ∈ (t, t+ ε]

]
≤ ε

σ . In particular,
Pr
[
∆i ∈ (0, ε]

]
≤ ε

σ .

Proof. Assume we fixed all weights except for i. Then xUL,−i is completely determined. We remind
the reader that x∗,+i is defined as the leftmost point that contains item i and is higher than xUL,−i.

Now we turn our attention to the “precursor” of x∗,+i without the item i, namely the item x∗,+i−ei
where ei is the ith basis vector. The claim is that this point is completely determined when we fixed
all weights except i. Name that point y (formal definition of this point will be given later). The
point y is exactly the one that is leftmost with the condition that yi = 0 and pT y + pi ≥ pTxUL,−i
(by definition of x∗,+i). Note that the order of y’s does not change when adding wi. In particular, if
y1 was left of y2 (had smaller weight), then adding the (currently undetermined) wi will not change
their ordering.

More formally, let y := arg miny∈2[n]{wT y | pT y+ pi ≥ pTxUL,−i, yi = 0} (we drop the index i from

y for clarity). In other words, it is the leftmost solution without i higher than xUL,−i when we add
the profit of i to it. It holds that wTx∗,+i = wT y + wi. Therefore,

Pr
[
wTx∗,+i ∈ (t, t+ ε]

]
= Pr

[
wT y + wi ∈ (t, t+ ε]

]
= Pr

[
wi ∈ (t− wT y, t+ ε− wT y]

]
≤ ε

σ

Subclaim There exists i ∈ [n] s.t. xR = x∗,+i. In particular, ∃i s.t. ∆ = ∆i.

Proof. Let xUL be the most profitable (highest) point left of t. Formally:

xUL := arg max
x∈P
{pTx | wTx ≤ t}

Since the zero vector is always Pareto optimal there is always at least one point left of t, so xUL

is well-defined. There must be an item i s.t. that is contained in xR, but is not in xUL. Formally,
pick and fix any i ∈ [n] s.t. xRi = 1, xULi = 0. It is clear that such i must exist since otherwise xUL

would have higher weight than xR. Also, the height of xR higher than xUL since they are both on
the Pareto curve.

Clearly (for this i) it holds that xUL = xUL,−i. Assume for the sake of contradiction that x∗,+i is
not xR. Then:

• x∗,+i must be left of xR, otherwise we would have x∗,+i = xR and be done.

• x∗,+i must be higher than xUL by definition.

• x∗,+i cannot be higher than xR, otherwise xR would not be on the Pareto curve (since it’s
left of it). So assume it’s below xR.

• x∗,+i cannot be left of t, otherwise we would pick that point to be xUL (since it’s higher than
xUL).

• The only remaining spot for x∗,+i is right of t and left of xR, but that contradicts the choice
of xR as the leftmost point right of t.

10



Hence we conclude that xR = x∗,+i for our choice of i, which concludes the proof of the subclaim.

Combining the above Subclaims, we get

Pr[∆ ∈ (0, ε]] ≤
n∑
i=1

Pr
[
∆i ∈ (0, ε]

]
= n

ε

σ
.

This is equivalent to the statement of the Lemma, hence we are done.

Using the above analysis, we conclude with a smoothness theorem.

Theorem 29.9. For σ-smoothed instances, the expected size of P is bounded by n2/σ for all j ∈ [n].
In particular, the Nemhauser-Ullman algorithm for the knapsack problem has a smoothed complexity
of O(n3/σ) for the smoothness model described in Subsection 4.1.

Proof. By Inequality (29.2), Lemma 29.7 and Lemma 29.8, we conclude that

E[|P |] ≤ 1 + limk→∞
∑nk

`=0 Pr

(
P ∩

(
`
k ,

`+1
k

]
6= ∅
)

≤ 1 + limk→∞ nk ·
n 1
k
σ = n2

σ .

4.4 More general result

The result can be extended beyond the knapsack problem. Let Π be a “combinatorial optimization”
problem given as

max pTx

s.t. Ax ≤ b
x ∈ S

where S ⊆ {0, 1}n. Observe: the knapsack problem is one such problem. Beier and Vöcking prove
the following theorem.

Theorem 29.10 ([BRV07]). Problem Π has polynomial smoothed complexity if solving Π on uni-
tarily encoded instances can be done in polynomial time.

For the knapsack problem, the dynamic programming algorithm has a running time of O(ng),
where g is the size of the knapsack. If the instance is encoded in binary, then we need O(n log g)
bits for the input and hence this algorithm is not polynomial-time; however if input is encoded in
unary then we use O(ng) to encode the instance, and the dynamic programming algorithm becomes
polynomial-time.

References

[Aro98] Sanjeev Arora, Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems, Journal of the ACM (JACM) 45 (1998), no. 5, 753–782. 2

11



[BRV07] René Beier, Heiko Röglin, and Berthold Vöcking, The smoothed number of pareto opti-
mal solutions in bicriteria integer optimization, Integer Programming and Combinatorial
Optimization, 12th International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007,
Proceedings, 2007, pp. 53–67. 4, 4.1, 29.10

[BV03] René Beier and Berthold Vöcking, Random knapsack in expected polynomial time, Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), 2003,
pp. 232 – 241. 4

[Chr76] Nicos Christofides, Worst-case analysis of a new heuristic for the travelling salesman
problem, Tech. report, DTIC Document, 1976. 2

[Dan48] George B. Dantzig, Programming in a linear structure, U.S. Air Force Comptroller, USAF
(1948). 3

[Dan51] , Maximization of a linear function of variables subject to linear inequalities,
pp. 339 – 347, 1951. 3

[ERV07] Matthias Englert, Heiko Röglin, and Berthold Vöcking, Worst case and probabilistic anal-
ysis of the 2-opt algorithm for the tsp, Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 2007,
pp. 1295–1304. 2

[Lic13] Martin W. Licht, Smoothed analysis of linear programming, Diplom thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn, 2013, http://folk.uio.no/martinwl/linpro.

pdf. 3

[LK73] Shen Lin and Brian W Kernighan, An effective heuristic algorithm for the traveling-
salesman problem, Operations research 21 (1973), no. 2, 498–516. 2

[NU69] George L. Nemhauser and Zev Ullmann, Discrete dynamic programming and capital allo-
cation, Management Science 15 (1969), 494 – 505. 4.2

[ST01] Daniel A. Spielman and Shang-Hua Teng, Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time, Proceedings on 33rd Annual ACM Sym-
posium on Theory of Computing (STOC), 2001, pp. 296 – 305. 1

[ST04] , Smoothed analysis of algorithms: Why the simplex algorithm usually takes poly-
nomial time, Journal of the ACM 51 (2004), no. 3, 385 – 463. 1, 29.4, 3

[Ver09] Roman Vershynin, Beyond hirsch conjecture: Walks on random polytopes and smoothed
complexity of the simplex method, SIAM Journal on Computing 39 (2009), no. 2, 646 –
678. 3

12

http://folk.uio.no/martinwl/linpro.pdf
http://folk.uio.no/martinwl/linpro.pdf

	Introduction
	Traveling Salesman Problem - Lin-Kernighan Heuristic
	Smoothed complexity of the simplex algorithm
	The Nemhauser-Ullman algorithm for the knapsack problem
	The smoothness model
	The Nemhauser-Ullman algorithm
	Bounding Expected Size of Pareto Curve
	More general result


