
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #9: Matchings in Graphs: Algebraic Algorithms February 13, 2017
Lecturer: Anupam Gupta Scribe: David Kurokawa, Dabeen Lee

1 Outline and Background

In this lecture, we introduce algebraic methods to find a perfect matching in a graph. In particular,
we use so-called the “polynomial method” which is based on the fact that low degree polynomials
have a few number of roots. An interesting aspect of this technique is that not only it finds a
perfect matching, but it is also useful in finding other kinds of structures. For example, it can
be used to find a Red-Blue perfect matching. That is, when we are given a graph G whose edges
are colored in either red or blue and a fixed number k, we would like to find a perfect matching
M containing exactly k red edges. It is still an open question whether there is a deterministic
polynomial time algorithm to solve this problem. We introduce a randomized algorithm for Red-
Blue perfect matching using the polynomial method later in this note.

Below are some know results for perfect matching problem. These algorithms all work for general
graphs.

Authors Complexity Comments

Lovász [Lov79] O(m · nω) Randomized,
via Tutte and Edmonds matrix

Micali and Vazirani [MV80] O(m · n1/2)
Mulmuley, Vazirani, and Vazirani [MVV87] O(m · nω) Parallel algorithm
Rabin and Vazirani [RV89] O(n · nω)
Mucha and Sankowski [MS04] O(nω)

We look at matrix-based algorithms for finding a perfect matching (PM) or reporting its non-
existence. In Section 2, we cover basic facts about low degree polynomials. In Section 3, we
introduce an O(m · nω) time algorithm using the Edmonds matrix for bipartite matching problem
and the Tutte matrix for non-bipartite matching problem due to Lovász [Lov79]. In Section 4, we
show an O(n · nω) time algorithm given by Rabin and Vazirani [RV89]. Lastly, in Section 5, we
cover an application of these methods to Red-Blue matching problem, and we explain the so-called
“isolation lemma” introduced by Mulmuley, Vazirani, and Vazirani [MVV87].

2 Preliminaries: roots of low degree polynomials

An important idea for today’s lecture is that low degree polynomials have a few roots. In this
section, we will see this for both univariate and multivariate polynomials. The following theorem
is a consequence of the fundamental theorem of algebra, and it is for univariate polynomials.

Theorem 9.1 (Fundamental theorem of algebra). An univariate polynomial p(x) of degree at most
d over any field has at most d roots (unless p(x) is zero polynomial).

Now, let us look at multivariate polynomials. Can we say that a low degree polynomial which is
multivariate has a small number of roots as we did in Theorem 9.1 for univariate polynomials?
For example, p(x, y) = xy has degree 2 and the solutions to p(x, y) = 0 are exactly the points in
{(x, y) ∈ R2 : x = 0 or y = 0}. Observe that {(x, y) ∈ R2 : x = 0 or y = 0} is very sparse in R2.
Let us formalize this observation. The following result is called Schwartz-Zippel lemma.

1

Theorem 9.2 (DeMillo and Lipton [DL78], Zippel [Zip79], Schwartz [Sch80]). Let p(x1, . . . , xn)
be a non-zero polynomial of degree at most d over a field F. Suppose we choose values R1, . . . , Rn
independently and uniformly at random from S ⊆ F. Then

P [p(R1, . . . , Rn) = 0] ≤ d

|S|
.

and this implies the number of roots of p in Sn is at most d|S|n−1.

Proof. We argue by induction on n.

Base case (n = 1): By Theorem 9.1, any univariate polynomial with degree d has at most d roots.
Thus we have that P [p(R1) = 0] ≤ d/|S| as desired.

Inductive step: Let k be the highest power of xn that appears in p and let q(x1, . . . , xn−1)
and r(x1, . . . , xn) be the (unique) polynomials such that p(x1, . . . , xn) = xknq(x1, . . . , xn−1) +
r(x1, . . . , xn). We also assume that the highest power of xn that appears in r is less than k.
That is, when dividing p by xkn, q is the quotient and r is the remainder. Now letting E be the
event that q(R1, . . . , Rn−1) is zero we find

P [p(R1, . . . , Rn) = 0] = P [p(R1, . . . , Rn) = 0 | E]P [E] + P
[
p(R1, . . . , Rn) = 0 | Ē

]
P
[
Ē
]

≤ P [E] + P
[
p(R1, . . . , Rn) = 0 | Ē

]
By the inductive assumption, and noting that q has degree at most d − k, we know P [E] =
P [q(R1, . . . , Rn−1) = 0] ≤ (d − k)/|S| and similarly, viewing p as a polynomial only on xn (with
degree k), we know P

[
p(R1, . . . , Rn) = 0 | Ē

]
≤ k/|S|. Thus we get

P [p(R1, . . . , Rn) = 0] ≤ d− k
|S|

+
k

|S|
=

d

|S|
.

Remark 9.3. Let p(x1, . . . , xn) be a multivariate polynomial of degree at most d over a field F.
Choose R1, . . . , Rn independent and uniformly at random from S ⊆ F such that |S| ≥ dn2. If p is
a non-zero polynomial,

P [p(R1, . . . , Rn) = 0] ≤ 1

n2
.

If p is zero polynomial,
P [p(R1, . . . , Rn) = 0] = 1.

3 Lovász’s O(m · nω) time algorithm

In this section, we explain an algorithm due to Lovász [Lov79] for finding a perfect matching in
both bipartite and non-bipartite graphs.

3.1 Bipartite matching

Before we state the algorithm, we define the Edmonds matrix.

Definition 9.4. We are given a bipartite graph G = (L∪R,E) with |L| = |R| = n. The Edmonds
matrix ε(G) of G is defined as follows.

εi,j =

{
0 if (i, j) 6∈ E and i ∈ L, j ∈ R
xi,j if (i, j) ∈ E and i ∈ L, j ∈ R.

2

1

2

1

2

Figure 9.1: Bipartite graph

Example 9.5. Consider the bipartite graph in Figure 9.1. The Edmonds matrix of this graph is
as follows.

ε =

[
x11 x12
0 x22

]
Notice that the determinant of ε is exactly x11x22.

In general, we can use the Leibniz formula to compute the determinant of the Edmonds matrix of
a bipartite graph G.

det (ε(G)) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

εi,σ(i)

We remark that a perfect matching in G corresponds to a permutation σ ∈ Sn. Each i ∈ L is
matched to σ(i) ∈ R.

Proposition 9.6. Let G be a bipartite graph, and let ε(G) denote the Edmonds matrix of G. Then
det (ε(G)) is a non-zero polynomial if and only if G contains a perfect matching.

Based on Proposition 9.6, we can provide a randomized algorithm to test whether a given bipartite
graph contains a perfect matching.

Algorithm 1 PM-tester(G, S)

construct the Edmonds matrix ε(G) of a bipartite graph G
for each non-zero entry εij in ε(G), we sample a number Rij ∈ S independently and uniformly
at random
evaluate the determinant of ε(G) with the chosen values for its entries
if det (ε(G)) = 0 then

return G does not have a perfect matching (NO)
else

return G contains a perfect matching (YES)
end if

Lemma 9.7. Assume that |S| ≥ n3. Then Algorithm 1 always returns ‘NO’ if G has no perfect
matching, while it says ‘YES’ with probability at least 1− 1

n2 otherwise.

3

Proof. It is straightforward by Theorem 9.2.

Remark 9.8. We can compute the determinant of ε(G) in O(n3) time using Gaussian elimination
method, so Algorithm 1 runs in time O(n3). In fact, Bunch and Hopcroft [BH74] proved that both
computing matrix inversion and determinant are as hard as matrix multiplication. Thus, we can
make Algorithm 1 terminate in time O(nω).

Using the perfect matching tester described as Algorithm 1, we now have an algorithm to find a
perfect matching in a graph if one exists. Suppose that a bipartite graph G has a perfect matching.
Then we pick an edge e and check if G[E − e], the induced subgraph of G by the edges in E − e,
contains a perfect matching. If not, then e must be part of every perfect matching in G. The
following is an algorithm based on this observation.

Algorithm 2 Find-PM(G, S)

if PM-tester(G, S) returns ‘NO’ then
return G does not have a perfect matching

else
let e = {u, v} be an edge in G
if PM-tester(G[E − e], S) returns ‘YES’ then

return Find-PM(G[E − e], S)
else

let Find-PM(G[V − {u, v}], S) return M ′

return M ′ + e
end if

end if

Theorem 9.9. Given a bipartite graph G, Algorithm 2 finds a perfect matching with probability at
least 1

2 if G contains a perfect matching. In addition, Algorithm 2 runs in time O(m · nω).

Proof. At each recursive step, we either delete an edge or two vertices from the input graph. Thus,
the number of total recursive steps inside Algorithm 2 is at most m. Hence, the running time of this
algorithm is O(m · nω). At each step, the probability that the PM-tester returns a wrong answer
is at most 1

n2 . By union bound, the probability that the PM-tester makes no mistake is at least
1− m

n2 which is at least 1
2 .

Corollary 9.10. Given a bipartite graph G containing a perfect matching, there is an Õ(m · nω)
time algorithm which finds a perfect matching with high probability.

Proof. Run Algorithm 2 c log n times for some constant c ≥ 2. The probability of not getting a
perfect matching at all iterations is at most 1

nc . Hence, we obtain a perfect matching with high
probability.

Remark 9.11. In fact, we can easily reduce time complexity of Algorithm 2 from O(m · nω) to
O(n log n ·nω). Instead of looking at just one edge in each step, we pick one vertex and consider all
the edges incident to it. Suppose that a bipartite graph G has a perfect matching. Then we pick
a vertex u and let e1, . . . , e` denote the edges incident to u. Consider G[E − {e1, . . . , ek}] where
k = b `2c. If G[E−{e1, . . . , ek}] does not contain a perfect matching, then we know that any perfect

matching in G has an edge in {e1, . . . , ek}. In this case, we investigate G
[
E −

{
e1, . . . , eb k

2
c

}]
. If

not, there is a perfect matching in G containing an edge in {ek+1, . . . , e`}. In this case, we consider

4

G
[
E −

{
e1, . . . , ek+d k

2
e

}]
. We can repeat this binary-search-type procedure, and we can find v

adjacent to u such that a perfect matching in G contains edge {u, v}. Then we delete u and v from
G, and look at the resulting graph. There are at most O (log(det(u))) = O(log n) iterations in this
procedure. Since there are at most n vertices to investigate and each iteration takes O(nω) time, it
takes O(n log n · nω) in total. The following algorithm summarizes the aforementioned procedure.

Algorithm 3 Refined-Find-PM(G, S)

if PM-tester(G, S) returns ‘NO’ then
return G does not have a perfect matching

else
let U be a vertex in G
let e1, . . . , e` be the edges incident to u
do binary search to find k such that PM-tester(G [E − {e1, . . . , ek}], S) returns ‘YES’ and

PM-tester(G [E − {e1, . . . , ek+1}], S) returns ‘NO’
let v denote the other end of ek+1

let Find-PM(G[V − {u, v}], S) return M ′

return M ′ + e
end if

3.2 Non-bipartite matching

In this section, we explain an algorithm for finding a perfect matching in non-bipartite graphs using
the Tutte matrix which is defined as follows.

Definition 9.12. Suppose we have a graph general graph G = (V,E) such that |V | = n. Then the
Tutte matrix T (G) of G is the n× n skew-symmetric matrix1 given by

Ti,j =


0 if (i, j) 6∈ E or i = j

xi,j if (i, j) ∈ E and i < j

−xj,i if (i, j) ∈ E and i > j.

Example 9.13. Consider the graph in Figure 9.2

1

2

3

4

Figure 9.2: Non-bipartite graph

1A matrix A is said to be skew-symmetric if AT = −A.

5

Notice that the corresponding Tutte matrix of this graph is the following.
0 x1,2 0 x1,4
−x1,2 0 x2,3 x2,4

0 −x2,3 0 x3,4
−x1,4 −x2,4 −x3,4 0


An important property of this matrix is the following (we left the proof of the following theorem
as an exercise).

Theorem 9.14. The Tutte matrix T (G) of G has non-zero determinant if and only if there exists
a perfect matching in G.

By Theorem 9.14, in order to check the existence of a perfect matching in a graph, it suffices to
look at the determinant of its corresponding Tutte matrix. Besides, this implies that there exists
an O(m · nω) time algorithm for perfect matching problem in non-bipartite graphs. We just need
to slightly modify Algorithm 1. Observe that both Algorithm 2 and Algorithm 3 also work for
non-bipartite graphs.

Corollary 9.15. Given a graph G, not necessarily bipartite, there is an Õ(m · nω) time algorithm
which finds a perfect matching with high probability if one exists.

Proof. We slightly modify Algorithm 1 to check if a given graph G contains a perfect matching.
We construct the Tutte matrix of G, and compute its determinant. Then, it is easy to show that
the resulting algorithm decides the existence of a perfect matching in G with probability at least
1 − 1

n2 if |S| ≥ n3. If G contains a perfect matching, we use Algorithm 2 or Algorithm 3 to find
one.

4 O(n · nω) time algorithm by Rabin and Vazirani

In this section, we show an O(n · nω) algorithm for perfect matching problem due to Rabin and
Vazirani [RV89]. Their algorithm works for both bipartite and non-bipartite graphs, but we are
going to cover only the bipartite graph case in this note.

Let G = (V,E) be a bipartite graph where V = L ∪ R and |L| = |R| = n. We denote by ε(G)
the Edmonds matrix of G. As we did in Section 3.1, we choose a value Rij independently and
uniformly at random from a set S of size at least n3 for each non-zero entry εij of ε(G). Let ε̃
denote the matrix after instantiating ε(G) with those random values for its entries.

By Proposition 9.6, G has a perfect matching if and only if the determinant of ε(G) is a non-
zero polynomial. Therefore, det ε̃ 6= 0 with probability at least 1 − 1

n2 . Moreover, we can find a
permutation π ∈ Sn such that ε̃i,π(i) 6= 0 for each i ∈ [n] in this case. Rabin and Vazirani [RV89]
proved that you can find such a permutation π in time O(n · nω).

If such a permutation π ∈ Sn exists, we know that there is j ∈ [n] such that ε̃1,j 6= 0 and
det(ε̃−1,−j) 6= 0. Based on this observation, we can construct the following algorithm.

6

Algorithm 4 Naive-RV-Bipartite(G, S)

construct the Edmonds matrix ε(G) of a bipartite graph G
for each non-zero entry εij in ε(G), we sample a number Rij ∈ S independently and uniformly
at random
instantiate ε(G) with the chosen values for its entries and let’s say it is ε̃
Compute ε̃−1 and det(ε̃)
if det(ε̃) = 0 then

return G does not have a perfect matching
else

for j ∈ {1, . . . , n} do
if ε̃1,j 6= 0 and det(ε̃−1,−j) 6= 0 then

let u be the first vertex of L and v be the jth vertex of R
let e be the edge with u and v as its two ends.
return e + Naive-RV-Bipartite(G[V − {u, v}], S)

end if
end for

end if

Remark 9.16. Algorithm 4 runs in O(n2 · nω) time, because it involves computing determinants
of n2 submatrices of ε̃. However, the algorithm given in the previous section provides better time
complexity.

Therefore, we need to somehow reduce the number of determinant computation steps. In fact, we
have an explicit formula for the inverse matrix of a given matrix by Cramer’s rule:

(
A−1

)
i,j

=
(−1)i+j det(A−j,−i)

det(A)
. (9.1)

By (9.1), we get the following.

det(ε̃−1,−j) =
(
ε̃−1
)
j,1

(−1)j+1 det(ε̃) (9.2)

Once we compute the inverse and determinant of ε̃, we can compute all of det(ε̃−1,−1), . . . ,det(ε̃−1,−n)
using (9.1). Since we know that computing ε̃−1 and det(ε̃) takes O(nω) time by Bunch and
Hopcroft [BH74], we can find j ∈ [n] satisfying both ε̃1,j 6= 0 and det(ε̃−1,−j) 6= 0 in time O(nω).
This leads to the following refinement of Algorithm 4.

7

Algorithm 5 RV-Bipartite(G, S)

construct the Edmonds matrix ε(G) of a bipartite graph G
for each non-zero entry εij in ε(G), we sample a number Rij ∈ S independently and uniformly
at random
instantiate ε(G) with the chosen values for its entries and let’s say it is ε̃
Compute ε̃−1 and det(ε̃)
if det(ε̃) = 0 then

return G does not have a perfect matching
else

for j ∈ {1, . . . , n} do
compute ε̃−1

if ε̃1,j 6= 0 and det (ε̃−1,−j) 6= 0 then
let u be the first vertex of L and v be the jth vertex of R
let e be the edge with u and v as its two ends.
return e + RV-Bipartite(G[V − {u, v}], S)

end if
end for

end if

Theorem 9.17. Given a bipartite graph G, Algorithm 5 finds a perfect matching with probability
at least 1

2 if G contains one and it runs in time O(n · nω). Besides, there is an Õ(n · nω) time
algorithm which finds a perfect matching in G with high probability if one exists.

Proof. Notice that we have replaced n2 determinant computation steps with n steps, as desired.

Remark 9.18. After we find j ∈ [n] such that ε̃1,j 6= 0 and det (ε̃−1,−j) 6= 0, we need to recurse
on ε̃−1,−j . We remark that we can easily compute the inverse of ε̃−1,−j once we have ε̃−1. This is
due to the following formula: Let

A =

[
a1,1 vT

u B

]
and A−1 =

[
â1,1 v̂T

û B̂

]
(9.3)

where â1,1 6= 0. Then

B−1 = B̂ − 1

â1,1
ûv̂T (9.4)

5 Red-Blue perfect matching in bipartite graph

5.1 Red-Blue matching

Let us state first the Red-Blue matching problem.

- Red-Blue matching problem: We are given a graph G and a fixed number k. Then we
color each of its edges in either red or blue. The problem is to find a perfect matching in G
containing exactly k red edges.

In this section, we show how the polynomial method can be used to solve this problem. We assume
that the input graph G is bipartite, and there exists a unique red-blue perfect matching. Let’s

8

define a matrix M as follows.

Mi,j =


0 if (i, j) 6∈ E,
1 if (i, j) ∈ E and colored in blue,

y if (i, j) ∈ E and colored in red,

Let p(y) denote the determinant of M as a function of y. Then p(y) is a polynomial in y with degree
at most n. Observe that there exists a unique perfect matching with exactly k red edges if and only
if p(y) has a term of form ±yk. We can use Lagrangian interpolation method to find p(y): choose
n + 1 distinct numbers a0, . . . , an, and evaluate p(a0) . . . , p(an) by computing the determinant of
M at y = ai for each i.

5.2 Isolation lemma

Let’s consider a bipartite graph G. In the previous section, we look at the Red-Blue matching prob-
lem. One of the assumptions we made was the uniqueness of red-blue perfect matching contained
in G. In this section, we will show that we can make G contain a unique minimum weight red-blue
perfect matching with high probability.

G could potentially have n! matchings. Now, we set edge weights randomly from a set of size 2m,
say S = {1, . . . , 2m}. The following theorem is due to Mulmuley, Vazirani, and Vazirani [MVV87],
and it is called “isolation lemma”.

Theorem 9.19 (Mulmuley, Vazirani, and Vazirani [MVV87]). The probability that there exists a
unique minimum weight perfect matching is at least 1

2 .

Proof. We call edge e “confused” if the weight of a minimum weight perfect matching containing e
is the same as that of a minimum weight perfect matching not containing e. To prove this theorem,
we need the following 2 claims.

Claim 9.20. If M and M ′ are both minimum weight perfect matchings, then edge in M4M ′ is
confused.

Claim 9.21. Let e be an edge in G. Then the probability that e is confused is at most 1
2m .

We first note that Claim 9.21 implies that the probability of the existence of a confused edge is
at most 1

2 by union bound. By Claim 9.20, the probability that there exist at least two minimum
weight matchings is bounded above by the probability of the existence of a confused edge, which
is at most 1

2 . Therefore, Claim 9.20 and Claim 9.21 imply that the probability that there exists a
unique minimum weight perfect matching is at least 1

2 , as required.

To complete the proof, it suffices to prove both claims. Claim 9.20 is straightforward, so let us
show Claim 9.21. Let e be an edge in G. We first set weights of all edges other than e. Let W1

be the weight of a minimum weight perfect matching not containing e. Let W2 be the minimum
weight of a set S such that S + e forms a perfect matching in G. If W2 ≥ W1, then any perfect
matching containing e has weight greater than W1 and thus e is not confused. Hence, e is confused
only if W2 < W1. If W2 < W1, e becomes confused when e has weight exactly W1−W2. Therefore,
the probability of e being confused is at most 1

2m , as desired.

Remark 9.22. Similarly, we can also show that the probability that there exists a unique minimum
weight red-blue perfect matching is at least 1

2 . We just need to follow the proof of Theorem 9.19
and consider only red-blue perfect matchings.

9

Now, we define a matrix M as follows.

Mi,j =


0 if (i, j) 6∈ E,
2wij if (i, j) ∈ E and colored in blue,

2wijy if (i, j) ∈ E and colored in red,

where we denotes the randomly chosen weight of edge e. Let p(y) denote the determinant of M as
a function of y.

Corollary 9.23. If G contains a red-blue perfect matching, then the coefficient of term yk in p(y)
is non-zero with probability at least 1

2 .

Proof. If is sufficient to show that if there is a unique minimum weight red-blue perfect matching in
G, then the coefficient of yk in p(y) is non-zero. Let W denote the weight of the minimum weight
red-blue perfect matching. Then, other red-blue perfect matchings have weight at least W + 1.
This implies the coefficient of term yk can be written as 2W +

∑`
i=1(−1)ai2W+bi where ai ∈ {0, 1}

and bi ≥ 1. Notice that

2W +
∑̀
i=1

(−1)ai2W+bi = 2W

(
1 + 2

∑̀
i=1

(−1)ai2bi−1

)
.

Since 1 + 2
∑`

i=1(−1)ai2bi−1 is an odd number, the coefficient of yk cannot be zero.

References

[BH74] James R. Bunch and John E. Hopcroft. Triangular factorization and inversion by fast
matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974. 9.8, 4

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193 – 195, 1978. 9.2

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages
565–574, 1979. 1, 3

[MS04] M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination. In 45th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–255, Oct
2004. 1

[MV80] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algoithm for finding maximum matching

in general graphs. In 21st Annual Symposium on Foundations of Computer Science (sfcs
1980), pages 17–27, Oct 1980. 1

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105–113, 1987. 1, 5.2, 9.19

[RV89] M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs through ran-
domization. J. Algorithms, 10(4):557–567, December 1989. 1, 4

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, October 1980. 9.2

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79,
pages 216–226, London, UK, UK, 1979. Springer-Verlag. 9.2

10

	Outline and Background
	Preliminaries: roots of low degree polynomials
	Lovász's O(mn) time algorithm
	Bipartite matching
	Non-bipartite matching

	O(nn) time algorithm by Rabin and Vazirani
	Red-Blue perfect matching in bipartite graph
	Red-Blue matching
	Isolation lemma

