15-850: Advanced Algorithms CMU, Spring 2017
Lecture #9: Maximum Bipartite Matchings February 13, 2017
Lecturer: Anupam Gupta Scribe: Pranav Devrakonda

We present two different approaches for this problem of maximum bipartite matchings.

1 Buyers and sellers

The setting is n buyers and n items, and buyer b values item 7 at vp;. The goal is to match each
buyer to a distinct item and maximize the sum of the values obtained.

Now suppose that each item 4 is sold at a price p;. Then, we can define the utility of item ¢ to
buyer b as vy; — p;. Intuitively, utility measures how favorable it is for buyer b to buy item 4, since it
factors in both the value and the price of the item. We will say that buyer b prefers item 1 if ¢ gives
the highest utility to buyer b, among all items. A buyer can have more than one preferred item,
since there can be a tie. Then, we can build a preference graph whose edges are the edges (b, %)
such that buyer b prefers item ¢. Here are two examples of preference graphs, where the second
graph results from an increase in price of item 1:
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Theorem 9.1 (LP Duality). If an LP is feasible, then the optimum of the primal LP is equal to
the optimum of the dual LP.

Theorem 9.2. For all price assignments pi,...,pn, if the preference graph contains a perfect
matching M, then M is a maz weight perfect matching.

Proof. We will formulate the matching problem as a linear program. We will allow “fractional”
matching by assigning each edge (b,) a value xp; in the interval [0, 1]:

Primal linear program: Dual linear program:
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Note that the dual formulation closely resembles prices and utilities: p; are the prices, and u; are
almost the utilities, with wp > v — p;.



Now suppose that the preference graph has a perfect matching M. Let u; be the utility of the item
matched to buyer b, so that up = vy, — p; for each matched (b,i). We know that v;, — p; < wy is
satisfied, because all of the matches are in the utility-maximizing preference graph. Therefore, the
matching is a feasible solution to the dual program, with value
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But note that M is also feasible in the primal program with the same value Z vip! And by
(bji)eM

linear programming duality, if a value can be attained in both the primal and dual programs, then

that value is optimal in both. Thus, M is an optimal matching in the primal program.
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2 The Hungarian algorithm

Now we present the Hungarian algorithm, which is based on the buyers-and-sellers setting from
the previous section. The algorithm was originally solved by Carl Gustav Jacobi, but it was first
published by Harold Kuhn [1], who based his ideas on the works of Jen6 Egervary and Dénes Konig.
Munkres showed that the algorithm was in fact implementable in O(n?) [2]. The algorithm goes as
follows:

Initially, all items are sold at price 0.

For each iteration, build the current preference graph. If the graph contains a perfect matching,
then return it. The previous theorem ensures that the matching is optimal.

Otherwise, by Hall’s theorem, there must be a set B of buyers such that if N(B) is the set of items
preferred by at least one buyer in B, then |[N(B)| < |B|. (N(B) is the neighborhood of B in the
preference graph.) Intuitively, we have many buyers trying to buy few items, so logically, the sellers
of those items should raise their prices! Therefore, the algorithm increases the price of every item
in N(B) by 1. (Let’s assume that all values in this problem are integral.)

That is the end of the algorithm. Here is the algorithm run on the graph from before:
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It is not even clear that the algorithm is guaranteed to terminate, so we will prove termination by
a semi-invariant argument. The quantity to keep track of is the value of Z p; + Z up, where p;

7 b
are the prices and uy is the maximum utility of buyer b. Note that this value is lower-bounded by
the optimum of the dual program. Then, it suffices to prove the following:

Theorem 9.3. Every time we increase the prices in N(B) by 1, the value onphLZ uy decreases
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by at least 1.



Proof. The value of Z p; increases by |N(B)|, because we increase the price of each item in N(B)

3
by 1. For each buyer b € B, the value u, must decrease by 1, since all preferred items had their
prices increased by 1, and all other items had utilities at least 1 lower than the original u,. (Here,
we need the fact that all values are integral.) Therefore, the value of Zpi + Zub changes by
i b
IN(B)| — |B| < 0.
O

Remark 9.4.

e The above is an extension of Vickery auctions with n — 1 dummy items and one real one with
prices set to the second highest price.

e If you don’t like the fact that utilities may be negative, then you can just choose S to be the
smallest “conflicted” set and raise the prices for N(S). THen, we can ensure that each buyer
still has at least preferred item which has nonngegative utility.

e This gives VCG prices!

3 The augmenting path algorithm

Here, we will switch from maximum matchings to minimum matchings, because the latter is easier
to explain in this section. Of course, the two problems are equivalent, since we can always negate
edges (and, if necessary, shift them so that they become positive again).

A second algorithm to compute minimum matchings uses an augmenting path subroutine. The
subroutine, which takes in a matching M and returns one of size |M|+1, is presented below. Then,
we can start with the empty matching and call this subroutine until we get a maximum matching.

Let the original bipartite graph be G. Construct the directed graph G, as follows: For each edge
e € M, insert that edge directed from right to left, with weight —w.. For each edge e € G\ M,
insert that edge directed from left to right, with weight w.. Then, compute the shortest path P
that starts from the left and ends on the right, and return M A P. It is easy to see that M A P is
a matching of size |[M| + 1, and has total weight equal to the sum of the weights of M and P.

Call a matching M an extreme matching if M has minimum weight among all matchings of size
|M|. The main idea is to show that the above subroutine preserves extremity, so that the final
matching must be extreme and therefore optimal.

Theorem 9.5. If M is an extreme matching, then so is M A\ P.

Proof. Suppose that M is extreme. We will show that there exists an augmenting path P such
that M A P is extreme. Then, since the algorithm finds the shortest augmenting path, it will find
a path that is no longer than P, so the returned matching must also be extreme.

Consider an extreme matching M’ of size |[M| + 1. Then, the edges in M A M’ are composed of
disjoint paths and cycles. Since M /A M’ has more edges in M’ than edges in M, there is some
path P C M A M’ with one more edge in M’ than in M. This path necessarily starts and ends
on opposite sides, so we can direct it to start from the left and end on the right. We know that
|IM'N P|=|MnNP|+ 1, which means that M\ P and M"\ P must have equal size. The total weight
of M\ P and M’\ P must be the same, since otherwise, we can swap the two matchings and improve
one of M and M'. Therefore, M A P = (M' N P)U (M\P) has the same weight as M’ and is
extreme. 0



Note that the formulation of G is exactly the graph constructed if we represent the minimum
matching problem as a min-cost flow. Indeed, the previous theorem can be generalized to a very
similar statement for the augmenting path algorithm for min-cost flows.

References

[1] Harold W Kuhn. The hungarian method for the assignment problem. In 50 Years of Integer
Programming 1958-2008, pages 29-47. Springer, 2010. 2

[2] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2002. 2



	Buyers and sellers
	The Hungarian algorithm
	The augmenting path algorithm

