15-850: Advanced Algorithms CMU, Spring 2017
Lecture #7: Matchings in Graphs: Linear Programs and Integrality of Polytopes
February 8, 2017 - February 4, 2015

Lecturer: Anupam Gupta Scribe: Colin White, Aditya Krishnan

In this lecture, we will start by reviewing basic concepts and definitions for linear programming. The
objective of this lecture is to explore whether linear programs capture the structure of the several
problems we have been studying, such as MSTs, min-weight arborescences and most importantly
graph matchings.

We shall show that there exist “small” linear programs that solves min-cost perfect matchings in
bipartite graphs. This will motivate us to suggest a linear program to solve min-cost matchings in
general graphs.

1 Linear Programming

We start with some basic definitions and results in Linear Programming. We will use these results
while designing our linear program solutions for min-cost perfect matchings, min-weight arbores-
cences and MSTs.

Definition 7.1. Let @ € R™ be a vector and let b € R be some scalar. Then, a half-space in R" is
a region, defined by the set {¥ € R" | @ - & > b}.

1

T s2

The following figure is an example of a half space in R? given by the set: {Z | [

T2

Figure 7.1: Example of a half-space in R?
Definition 7.2. A polyhedron in R is the intersection of a finite number of half spaces.

A polyhedron is a convex region which satisfies some number of linear constraints. A polyhedron
in n dimensions with m constraints is often written compactly as K = {Ax < b}, where A is an m
by n matrix of constants, x is an n by 1 vector of variables, and b is an m by 1 vector of constants.

Definition 7.3. A polytope K € R" is a polyhedron such that 3R > 0 where K C B(0, R).
1

In other words, a polytope is a bounded polyhedron. The following is an example of a polytope;
the bounded region of the polytope is highlighted by []

Figure 7.2: Example of a polytope in R?

Now we can define a linear program in terms of a polyhedron.

Definition 7.4. For some integer n, a polyhedron K, and an n by 1 vector ¢, a linear program in
n dimensions is

n
minimize E c;x; subject to ¥ € K
i=1

We can also have linear programs that maximize some objective function. Just flip the sign of all
components of ¢. Also note that K need not be bounded to have a solution. For example, the
following linear program has a solution even though the polyhedron is unbounded:

min{z; + x9 | z1 + x2 > 1}. (7.1)

Now we will present three different definitions about types of points that may appear in a polytope.

Definition 7.5. Given a polytope K, a point « € K is an extreme point of K if there do not exist
x1,x9 € K, 1 # x9, and X € [0, 1], such that z = Azy + (1 — \)xa.

In other words, an extreme point of K cannot be written as the average of two other points in K.
See Figure 7.3 for an example.

Now we move to another definition about points in K.

Definition 7.6. A point x € K is a vertex of K if there exists an n by 1 vector ¢ € R"™ such that
cle<clyforally#z,ye K.

So, a vertex is the unique optimizer for some objective function. Note that there may be a linear
program that does not have any vertices, as in Equation 7.1. Any assignment to 1 and xy such
that 1 + 2 = 1 minimizes x1 + 2, but none of these are strictly better than other points on that
line. And no other objective function has a minimum in a1 + 22 > 1.

Now we consider one last definition about points in K.

Figure 7.3: y is an extreme point, but x is not.

Definition 7.7. Given a polytope K € R", a point x € K is a basic feasible solution (bfs) to K if
there exist n linearly independent constraints in K which z satisfies at equality.

For example, let K = {a]z < b;} such that all constraints are linearly independent. Then z* is a
basic feasible solution if there exist n values of i such that a]2* = b;, and for the other values of 1,
alz* < b; (z* must satisfy all constraints because it is in K).

As you may have guessed by now, the last three definitions are all related. In fact, the following

fact shows they are all equivalent.

Fact 7.8. Given a polyhedron K, and a point x € K. Then the following are equivalent:

1. x is a basic feasible solution,
2. x is an extreme point, and

3. x 1s a vertex.

The proof is straightforward, and we will not present it here. Now we will show the main fact for
this section.

Fact 7.9. For a polytope K and an LP=min{cTx | z € K}, there exists an optimal solution x* € K
such that x* is an extreme point/vertez/bfs.

This fact suggests an algorithm for LPs when K is a polytope: just find all of the extreme
points/vertices/bfs’s, and pick the one that gives the minimum solution. There are only (’:Z)
vertices to check in K, where m is the total number of constraints and 7 is the dimension (because

we pick n constraints out of m to make tight).

Note that Fact 7.9 can be proven with weaker conditions than K being a polytope, but in this
lecture, we will stick to polytopes.

Also note that when the objective function is perpendicular to a constraint, then there could be
infinitely many solutions, but Fact 7.9 just states that there exists one optimal solution that is an
extreme point/vertex/bfs.

We finish off this section with one more definition, which will help us construct an LP for bipartite
matching in the next section.

Definition 7.10. Given z1,xs,...,zxy € R", the convexr hull of z1,...,x, is

CH(z1,...,2n) = {:c eR"

N
I, .., AN > 0 st Z)\izlandx:Z)\ixi} (7.2)
=1

In words, the convex hull of points x1,...,x, is the intersection of all convex sets containing
Z1,...,Tn. Another way of developing intuition for convex hulls is with the following “definition”;
the convex hull defined by the points z1,...,2, € R" is the maximal set of points that contain
x1,...,T, and have the property that any path from one point in the set to another never leaves
the set.

From that description, it is easy to see that every convex hull is also a polytope. We also know the
following fact:

Fact 7.11. Given a polytope K, then K = CH(x € R"™ | x is an extreme point of K).

2 Perfect Matchings in Bipartite Graphs

Now we go back to the problem of finding a min cost perfect matching (which we have considered
in previous lectures). For now, we will stick to bipartite graphs G = (L, R, E).

Let us denote the matchings in G as bit-vectors in {0, 1}#! For example, see Figure 7.4.

Figure 7.4: This graph has one perfect matching using edges 1, 4, 5, and 6, so we can represent it
as [1,0,0,1,1,1].

This allows us to define an |E| dimensional polytope which contains all perfect matchings. Let us
try the obvious choice for such a polytope, and see if it gives an efficient LP:

Cpy = CH(z € {0,1}P!| 2 represents a perfect matching in G).

The LP to find the min cost perfect matching of a bipartite graph with edge weights defined in
vector c is
min{c'z | x € Cppr}.

Then the solution will be at a vertex of Cpjs, which by construction represents a perfect matching.

This is great news, because we do not have to deal with a fractional solution to the LP because
every vertex in Cpyy is a {0, 1} vector. But, there is one problem. It is a huge pain to write down
Cpyr. In fact, Cpys could potentially have exponentially many vertices because out graph could
have exponentially many perfect matchings (e.g: complete bipartite graph).

Can we find a more compact way to write Cpyr down? Let’s try the following idea.

VielL, Z z, =1 and
ren(l)
Kpy=z€RE st {yp e R, Z z,,=1 and
IEN(r)
Ve € E, 20> 0

This polytope enforces that the weights of edges leaving every vertex is 1, so it seems plausible that
it is a polytope for perfect matching. This would be much easier to use in an LP, so now we would
like to show that Kpjs is the same as Cpyy.

Theorem 7.12. Kppy; = Cpyy.

We start with the easy direction, Cpy; C Kpys. Define x o as the indicator function for the edges
in a matching M.

Fact 7.13. CPM g KPM-

Proof. Clearly, for all perfect matchings M, xy € Kpps since a perfect matching satisfies the
constraints that an edge weight of 1 leaves every vertex. It follows that

Cpn = CH(xm | M is a perfect matching) C Kpjy

O

Now we must show that Kpysr C Cpys. It suffices to show that all extreme points/vertices/bfs’s of
Kpys belong to Cpps because of Fact 7.11. We will prove this three ways, using the three definitions
from the last section.

Proof. Extreme points:

Suppose z* is an extreme point of Kpys. We must show that z* € Cpys. Let supp(x*) denote the
edges for which z} # 0. First we will prove that supp(z*) is acyclic.

Suppose that supp(z*) contains a cycle x1,x9,...,x;. Since the graph is bipartite, [is even. All of
these vertices are in the support, so each have nonzero weight. Then there exists an € such that for
all x;, the weight of x; is > e.

Then we can create a new point 2] € K by adding e to the weight of each x; where i is odd, and
subtracting € to the weight of each z;, where 7 is even. Similarly, we define x5 by adding € from the

Xy X,-€ X +€

X; X3 X,+E X3+€

X4 X4-€ X,+E€
Figure 7.5: There cannot be a cycle in supp(xz*), because this violates the assumption that z* is
an extreme point.

even ¢’s, and subtracting e form the odd i’s. But then z* = %x*{ + %xé, violating our assumption
that x* is an extreme point. See Figure 7.5.

Therefore, there are no cycles in the support of x*. So there must be a leaf v in the support. Then
the single edge leaving v must have weight 1. But this edge goes to another vertex u, and because
xz* is in Kpps, then this vertex cannot have any other edges without violating its constraint. So
u and v are a matched pair. Now take u and v out of the graph. In the remaining graph, there
cannot be a cycle for the same reason as before, so we perform the same logic inductively to show
that x* is a perfect matching. Then x* € Cpyy. O

Our second proof was covered in the last lecture.

Proof. Vertices:

Suppose z* € Kpjs is a vertex of Kpys. Then it is an optimizer to some objective function. Recall
that in the last lecture, we showed that any unique cost function must be a perfect matching. So
¥ € Cpypy. O

Now we give a proof using the definition of bfs. Recall that Kpjs contains 2n + m constraints: one
constraint for each of the 2n vertices forcing the weight of edges leaving that vertex to sum to 1,
and then m constraints for nonzero edge weights.

Proof. Basic feasible solutions:

Let z* be a basic feasible solution of Kpjys. Then there exist m linearly independent constraints in
Kppr which are tight.

Assume that none of these tight constraints were a nonzero edge weight constraints. Then all the
tight constraints were forcing the edge weights coming out of a vertex to be 1. However, these 2n
constraints cannot all be linearly independent.

To see this, sum up all of the constraints for vertices in L.)7, > x;, = n. But notice that this is
exactly the same as summing up all of the constraints for vertices in R:) ", 2, = n. Therefore,
these 2n constraints cannot be linearly independent. So at most 2n — 1 of the linearly independent
tight constraints in x* can belong to the first 2n constraints.

Then > m — (2n — 1) constraints from z;,. > 0 are tight. So > m — (2n — 1) edges have x;,, = 0, so
[supp(x*)| < 2n — 1. Tt follows that there must be an edge with length 1. If we pull out this edge,
we can inductively perform the same argument on the smaller graph, to show that z* is a perfect
matching. This completes the proof. O

2.1 Min-cost Matchings
We looked at finding min-cost perfect matchings, but, what if our graph had no perfect matchings?
Can we still find min-cost matchings? !

Yes. In fact, a slight modification of our linear constraints will give us a polytope whose vertices
are matchings. For an in input graph that is bipartite, i.e G = (L, R, E), let us define Kpqsch-

VieL, Y z; <1 and
JER
Kytaten = ¢ € RIEI st (g € R, iji <1 and
jEL
Vi, 3, xi; >0
We will leave it as an exercise to the reader to use the techniques from the results for perfect

matchings to show that the vertices of Kjpsqien are matchings of G and indeed that Kpyrqien =
CH pjaten, where C H ppgiepn is the convex hull of all matchings in G.

3 Arborescences and MSTs

Now that we know how to use LPs to find min-cost perfect matchings in bipartite graphs, let us see
if we can use the ideas in the previous section as inspiration for designing LPs to find min-weight
arborescences and MSTs.

3.1 Min-weight Arborescences
Recall the definition of a r-arborescence:

Definition 7.14. A r-arborescence of a digraph G = (V, A) with root vertex r € V is a collection
of arcs B C A such that

1. Each vertex has one outgoing arc, except 7.

2. There exists a directed path from each vertex to r.

A min-weight r-arborescence is defined over a directed graph with non-negative edge weights and
is the smallest total weight r-arborescence of the graph.

Let us define the linear program that induces the polytope K 4,4 of all min-weight arborescences of
a digraph G = (V, A) with root vertex r € V. As in Kpyy, for each edge (i,75) € A we will define a
variable x;; € Rl

Yo £, Z Tou = 1 and
u€dt (v)
Kpp=w € R st V(SCV)Zr, Z x;; > 1 and
1€S,7ES
k\VI(Z,]) € Aa Lij >0

!This is not a trivial problem since the edge weights can be negative. In fact, that’s how we would find max-weight
matchings; by negating the weights.

The first and third set of inequalities should make sense. The second set of inequalities says that
for every subset of the vertices that does not contain the root, there must exist at least one edge
that leaves this subsets so as to satisy item (2) in Definition 7.14.

We can use the same techniques as in the previous section to show that K4, = CH 4.y where
CH 4,p is the convex hull formed by all r-arborscences of G.

Theorem 7.15. KArb = CHArb

3.2 Minimum Spanning Trees (a.k.a MSTSs)

We will skip defining MSTs and move straight to forming the LP that induces the polytope Krgr.
For a simple, undirected graph G = (V, E), Kjsg7 is the polytope in R/l whose vertices are exactly
the MSTs of G.

V(S cCV)#0, Z zi; > 1 and

i€S,5¢S
VSCV)#0, Y @ <|S|-1 and
KMST =X & R‘E| s.t 1,JES
Z Tij = |V‘ -1 and

i,jeV
Yi,5 €V, ZTij >0

Notice for the first constraint that S C V not S C V. The second and third set of inequalities
make sense, the first set says that for all subsets S of the vertex set that are not the empty set or
the full vertex set, there should be an edge leaving .S which forces the subgraph to be connected.

Define the convex hull of all minimum spanning trees of G to be CH;g7. Then, as we anticipated
CHyst = Kysr-

Theorem 7.16. Ky;s7 = CHpsr

We made it seem in this section that finding min-weight r-arborescences and MSTs are similar to
finding min-cost perfect matchings in bipartite graphs. But, notice that the polytopes K s, and
Kirst could potentially require exponentially many constraints. Thus, it would take exponential
time to simply write down the LP let alone solve it!

But, all is not lost. In fact, there are special algorithms called — separation oracles, which, given
a point x € R™ can reply YES if the point is within the desired polytope and NO if not. These
separation oracles are of course specific to each LP and for MSTs and r-arborescences, run in
polynomial time in the size of the dimension (in our case the number of edges). These separation
oracles can further be used by a polytime algorithm called Ellipsoid that can solve LPs in general.
Thus, there exist polytime algorithms to find the vertices of Ky;sr and K a.p.

Here’s a set of notes that explains the algorithms to find MSTs and min-weight r-arborescences in
polytime: http://theory.epfl.ch/osven/courses/Approx13/Notes/lecture9andl10.pdf

http://theory.epfl.ch/osven/courses/Approx13/Notes/lecture9and10.pdf

4 Perfect Matchings in General Graphs

Now we move to non-bipartite graphs. We define a polytope that is similar to the bipartite polytope.
Let 2(6(v)) denote the weight of all edges incident to v.

Yv eV, Z Tow =1 and
Kpy=2cR™st ues(v)
Vee E, x>0

This is not a convex combination of all perfect matchings. For example, a triangle graph with each
edge weight % will satisfy the constraints of this polytope.

So we need to add more constraints to Kpys. For a set of vertices S, let x(5(.S)) denote the weight
of all edges leaving S.

VS such that |S] is odd, Z Te > 1
e€d(S)

The above set of constraints is required because notice that a odd size vertex set cannot have a
perfect matching, thus, at least one edge from the perfect matching must leave S so as to match
all vertices in S. Adding these constraints to the existing Kpps defines the correct polytope. In
fact, the proof follows from Tutte’s theorem.

Thus, we have that the following LP construction, due to J.Edmonds [Edmonds, 1987], induces the
polytope Kgenpm Whose vertices are the perfect matchings of a general graph G = (V, E).

(VUE‘/, Z Ty = 1 and
u€d(v)
KgenPv = € RIF! 5.t VS st |S] =21, Z z. > 1 and
e€d(S)
Vee E, 2, >0

Notice now that our LP contains potentially exponential number of constraints as compared to
a polynomial number of constraints in the bipartite case. In fact, a theorem by [Rothvoss, 2013]
shows that any polytope whose vertices are the perfect matchings of the complete graph on n
vertices, must contain an exponential number of constraints.

Theorem 7.17. Kpy; = CH(all perfect matchings).

We give a sketch of the proof.

Let x* be a basic feasible solution in Kpjy; (we would like to show that z* is a perfect matching). So
there are m linearly independent tight constraints. If there already exists an edge such that z} = 0,
then drop e, and argue about G \ {e}, i.e., G without edge e. If z} = 1, then drop e = (u,v), and
induct on G \ (u,v). Then after this process, for all v, there exist at least two edges in supp(v).
If all vertices have support degree 2, then there must be a cycle. This will cause a contradiction,
as we saw in the proof of Theorem 7.12 for bipartite graphs. Therefore, there exists a vertex with
degree > 3 in the support. But then the number of edges in the support is greater than the number

of vertices. From this, we can show there is at least one x(4(S)) > 1 constraint that is tight. Call
it S*.

Take S*, and shrink it down to one vertex. Then we induct on S* itself, and on the remaining
graph with the single vertex as S*.

5 Interesting Aside

We have seen that LPs are an interesting way of formulating problems such as min-cost matchings,
min-weight r-aborescences and MSTs. We reasoned about the structure of the polytopes that the
LPs induce, and we were able to show that these LLPs do indeed solve these combinatorial problems.
Notice though that forming the LP is not sufficient, in fact, significant effort was put to show that
these polytopes did indeed have integer solutions at the vertices 2. If it were not the case that the
solutions were integer valued, we would have the same problem as considering the bipartite LP for
general graphs; we would get fractional solutions to these LPs that do not actually give us solutions
to our problem.

There is an interesting field of study that relates to the integrality of LPs. We will briefly introduce
a concept that deals with integrality of LPs. Recall that an LP can be written as

where A is a m x n matrix with each row corresponding to a constraint, ¥ is a n-long vector of
variables and b € R"™ is a m-long vector corresponding to the scalars b; € R in the constraint
AW .7 < b,

Definition 7.18. Call a matrix [A],,xn totally unimodular if every square submatrix B of A has

the property that det(B) € {0, £1}

We have the following neat theorem due to Kruskal-Hoffman.

Theorem 7.19. [Hoffman and Kruskal, 2010] If the constraint matriz [Almxn is totally unimod-
ular and the vector b is integral, i.e: be 7, then, the vertices of the polytope induced by the LP
are integer valued.

Thus, to show that the vertices are indeed integer valued, one need not go through the pains of
producing combinatorial proofs as we have, instead, we can just check that the constraint matrix
A is totally unimodular.

Here’s an interesting presentation about the relation between total unimodularity and graph match-
ings: http://wwwhome.math.utwente.nl/~uetzm/do/D0_Lecture6.pdf.

References

[Edmonds, 1987] Edmonds, J. (1987). Paths, trees, and flowers. pages 361-379. 4

[Hoffman and Kruskal, 2010] Hoffman, A. J. and Kruskal, J. B. (2010). Integral Boundary Points
of Convex Polyhedra, pages 49-76. Springer Berlin Heidelberg, Berlin, Heidelberg. 7.19

[Rothvoss, 2013] Rothvoss, T. (2013). The matching polytope has exponential extension complex-
ity. ArXiv e-prints. 4

2The solution vector was integer valued

10

http://wwwhome.math.utwente.nl/~uetzm/do/DO_Lecture6.pdf

	Linear Programming
	Perfect Matchings in Bipartite Graphs
	Min-cost Matchings

	Arborescences and MSTs
	Min-weight Arborescences
	Minimum Spanning Trees (a.k.a MSTs)

	Perfect Matchings in General Graphs
	Interesting Aside

