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2 Notation and Definitions

During this lecture, we will consider only simple graphs.

We will denote an undirected unweighted graph G with the vertex set V of size n and the edge set
E of size m as:

G = (V,E)

We will denote an undirected unweighted bipartite graph H with left vertices L, right vertices R
and edges E as:

H = (L,R,E)

Definition 6.1 (Matching). A matching on a graph is some subset of the edges M ⊆ E which
have no endpoints in common. Equivalently, (V,M) has max degree 1.

Given a matching M on a graph, we will say that:
A vertex v is open or exposed if there is no edge in the matching adjacent to v
A vertex v is closed or covered if there exists an edge e in the matching such that v is an endpoint
of e.

Definition 6.2 (Perfect Matching). A perfect matching on a graph is a matching M such that
|M | = |V |/2.

Definition 6.3 (Maximum Matching). The maximum matching on a graph is the matching with
the largest cardinality. We will denote the size of the maximum matching of graph G as MM(G).

Definition 6.4 (Maximal Matching). A maximal matching on a graph is a matching where no
additional edges can be added without violating the shared endpoint constraint.
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3 Bipartite Graphs

3.1 Ford-Fulkerson for matchings

Consider a bipartite graph G = (L,R,E). We can find the maximum matching of it via a reduction
to maximum flow.

We can do the following:

• Create a super source s and connect it to all of the vertices in L with a directed edge of
capacity 1 from s to L.

• Create a super sink t and connect all of the vertices in R to it with a directed edge of capacity
1 from R to t.

• Change every edge in E into a directed edge which points from its endpoint in L to its
endpoint in R, and give the edge capacity 1.

We can now run Ford-Fulkerson [FF56] on this graph. Due to the integral flow theorem, we know
that we can construct a max flow which gives a capacity of either 1 or 0 to each edge in our graph.

We will choose the edges which are fully saturated in the maxflow graph and present in our original
graph. These edges will form a maximum matching.

3.2 Augmenting paths for matchings

Alternatively, we can find the maximum matching via a more direct method, i.e. augmenting paths.

Definition 6.5 (Alternating Path). Given a matching M , an M -alternating path has edges in M
and not in M alternating.

Definition 6.6 (Augmenting Path). Given a matching M , an M -augmenting path is an M -
alternating path with both endpoints open.

For sets S, T , we define S4T := (S \ T )∪ (T \ S). Note that if P is M -augmenting, then P4M is
another matching with cardinality |M |+ 1.

Theorem 6.7. [Ber57] M is a maximum matching in G if and only if there are no M -augmenting
paths in G. G need not be bipartite.

Proof. (⇒) If M is a maximum matching, there are clearly no M -augmenting paths P , or M ′ =
M4P is a larger matching.

(⇐) Suppose M is not maximum, and the maximum matching M ′ has |M ′| > |M |. Consider
S = M4M ′. Every vertex is incident to at most 2 edges in S, so S consists of only paths and
cycles:

• Every cycle in S has even length because G is bipartite, and has alternating edges from M
and M ′.

• Every path in S has alternating edges from M and M ′.

• Because |M ′| > |M |, there exists a path in S that has more M ′-edges than M edges. But
this is an M -augmenting path.
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Figure 6.1: The use of Ford-Fulkerson to determine a matching

How do we find an augmenting path if one exists? An algorithm is given the proof of the following
theorem. We recall the definition of a vertex cover:

Definition 6.8 (Vertex Cover). A vertex cover of a graph is a set of vertices C such that every
edge in the graph has at least one endpoint in C. We denote the size of the smallest vertex cover
of graph G as V C(G).

Theorem 6.9. [Kön31] On a bipartite graph, the cardinality of the smallest vertex cover is the size
of the largest possible matching.

VC(G) = MM(G)

This is a special case of the max-flow min-cut theorem.

Proof. (V C ≥MM)

Since edges in the matching MM share no common endpoints, in order to have a vertex cover, we
must have at least one vertex for each edge.
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Proof. (V C ≤MM)

Given a matching M , we will either find an M -augmenting path in O(m) if such a path exists, or
find a vertex cover of size |M |. This shows that V C ≤MM . Essentially we perform a breadth-first
search, as follows:

Mark all open vertices in L (that are non-isolated) as being in layer 0.
For i = 0, 1, 2, . . .:

Mark all unmarked nodes with a non-matching edge to level 2i as being in layer 2i+1.
Mark all unmarked nodes with a matching edge to level 2i+1 as being in layer 2i+2.

If there is a vertex at level 2i + 1 with no matching edge, then we have found an M -augmenting
path going from level 0 to level 2i+1 in O(m) time. Otherwise, let X be the set of marked vertices.

We will take our vertex cover C to be the vertices on the left side which are not in X, and the
vertices on the right side which are in X.

C = (L \X) ∪ (R ∩X)

Claim 6.10. C is a vertex cover.

To show that this is a vertex cover, we must demonstrate that there can be no edges between L∩X
and R \X. Since this is a bipartite graph all other possible edges must have at least one endpoint
in C

• There can be no unmatched edge from the open vertices L∩X to R \X since otherwise that
vertex would be reachable from O and therefore in X. There cannot be a matched edge from
an open vertex by definition.

• There can be no unmatched edge from a closed vertex in L∩X to R \X as this would make
the endpoint in R \X reachable from O.

• There can be no matched edge from R \X to L ∩X. Since everything in L ∩X is reachable
from O, it must have a matched edge from something in R ∩X. Accordingly it cannot have
another matched edge due to matching constraints.
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Claim 6.11. |C| ≤MM .

• Every vertex in R∩X must have an edge in the matching as otherwise it would be open, and
there would be an augmenting path

• Every vertex in L \X must have an edge in the matching since no vertices in L \X are open.

• There can be no edges between L \ X and R ∩ X as this would mean that things in L \ X
were reachable from X and therefore O

So, every vertex in (L \ X) ∪ (R ∩ X) corresponds to a unique edge in the matching, and |C| ≤
MM .

The algorithm in the proof above shows that an augmenting path can be found in O(m) time.
Hence maximum matching can be done in O(mn) time.

3.3 Other algorithms

Hopcroft-Karp [HK73]: O(m
√
n) - This is the fastest current algorithm for matching on bipartite

graphs. It finds many augmenting paths at once and then combines them in a clever way.

Even, Tarjan [ET75]: O(min(m
√
m,mn2/3)) - An algorithm for computing maximum flows on

unit graphs.

4 Non-Bipartite Graphs

4.1 Tutte-Berge Theorem

Theorem 6.12. [Ber58] Given a graph G, the size of the maximum matching is described by the
following equation.

MM(G) = min
U⊆V

n + |U | − odd(G \ U)

2

Here U is a set of vertices such that if U is removed from G, the remainder of G becomes disjoint with
pieces {K1,K2, ...,Kt}. The quantity odd(G \U) is the number of such pieces with odd cardinality.

It is clear that the size of any matching M must be bounded by this quantity.

At most everything in U can be in the matching. Similarly, since the partitions Ki are disjoint,
vertices in Ki not matched with U can only be matched within the partition. This gives us:

|M | ≤ |U |+
t∑

i=1

⌊
ki
2

⌋
= |U |+ n− |U |

2
− odd(G \ U)

2

=
|U |+ n− odd(G \ U)

2
.

To make some sense of this formula, we can consider the trivial case when U = ∅. Here the formula
states that if the graph has an even size, then the maximum matching cannot be bigger than n/2,
and if it has an odd size, then the maximum matching cannot be bigger than (n− 1)/2.
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Another special case is when U is any vertex cover with size V . Then the Ki’s must be isolated
vertices, so odd(G \ U) = n − V . This gives us MM ≤ V+n−(n−V )

2 = V , i.e. the size of the
maximum matching is at most the size of any vertex cover.

4.2 Edmonds Blossom Algorithm

The blossom algorithm is an algorithm for finding the maximum matching in a general graph.

4.2.1 Definitions and Notations

A flower is a set of nodes and edges starting at an open vertex, with a “stem” of even number
of edges (matched and unmatched edges alternating), and a cycle of odd number of edges (again
with alternating matched and unmatched edges, but with the two edges adjacent to the stem
unmatched). The cycle is called the blossom. A illustration is shown in Figure 6.2(a).

Stem Blossom 

Matched edge 

Unmatched edge 

Open vertex 

(a) 

(b) 

A 

Figure 6.2: An example of blossom and the toggling of the stem.

4.2.2 Overview

The idea of Edmonds Blossom Algorithm [Edm65] comes from Berge’s Theorem.

Theorem 6.13. Given a graph G and a matching M , M is a maximum matching if and only if
there exists no M -augmenting path.

For a blossom, we can always toggle the stem part, such that the open vertex moves to the blossom.
As an illustration, after toggling the stem from Figure 6.2(a), we get the blossom in (b), where the
vertex A is now the open vertex. After this toggling, the length of stem is zero, and the blossom is
now the part in the purple rectangle.

Here we introduce an algorithm FindAugPath to explore augmenting paths in a graph given a
matching M . There are three possible results of this algorithm:

1. It returns “No M-augmenting path”. In this case, M is the maximum matching.

2. An augmenting path P is found. We can now augment along P , by setting M ←M4P .
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3. A blossom is found. Denote the blossom as B. Toggle the stem and shrink the blossom,
getting the graph G/B. Since the blossom contains an open vertex at the base (after the
toggle), the new vertex vB obtained by shrinking is an open vertex in the new graph G/B.
(illustrated in Figure 6.3). Call FindAugPath on G/B and M/B and get an M/B-augmenting
path P ′ in G/B. Finally, extend P ′ to M -augmenting path P in G. (See Figure 6.4.)

Figure 6.3: The shrinking of a blossom1

1Image found at http://en.wikipedia.org/wiki/Blossom_algorithm
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Figure 6.4: The translation of augmenting paths from G \B to G and back2

The correctness of FindAugPath are captured in the following theorem:

Theorem 6.14. The algorithm FindAugPath runs in O(m) time, and given graph G and matching
M , if there exists an M -augmenting path in G, it returns either (a) a blossom B, or (b) an M -
augmenting path.

And to ensure that if there were an M -augmenting path in G, we will indeed find an M/B-
augmenting path in G/B, and can lift this back to an M -augmenting path in the original graph,
we need the second theorem.

Theorem 6.15. Given graph G and matching M , let B be a blossom in G. There exists an
M -augmenting path in G if and only if there exists an M/B augmenting path in G/B.

Moreover, given P ′, an M/B augmenting path in G/B, we can get back an M -augmenting path P
in G in O(m) time.

We will prove these theorems in the following sections. But before that, let us show why this is an
O(mn2) time algorithm.

4.2.3 Runtime Analysis

Observe that if we get back an M -augmenting path, we can increase the size of the matching; this
takes only O(mn) time. Else, if we get back a blossom B, we recurse on a smaller graph. This

2Image found at http://en.wikipedia.org/wiki/Blossom_algorithm
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may happen repeatedly, but after at most O(n) recursions we either return an augmenting path P
on some smaller graph or get back “No augmenting path” for an answer. In the former case, we
can lift this augmenting path back to an M -augmenting path for G; in the latter case we can use
Theorem 6.15 to claim that there was no M -augmenting in the original graph. This takes a total
of O(mn) time. And we would need to do this at most n/2 times, since each time we augment the
size of the matching by 1. The total runtime is O(mn2).

An aside: this was improved to a runtime of O(m
√
n) by Micali and V. Vazirani [MV80]. The

resulting algorithm is quite involved; see a recent paper of Vijay Vazirani [Vaz13] giving a cleaner
explanation. Another algorithm by Mucha and Sankowski [MS06], based on fast matrix multipli-
cation, gives O(nω) complexity, where ω ≈ 2.376.

4.2.4 Proof of Theorem 6.15

We first give the proof of Theorem 6.15 as follows.

Proof. Since we can toggle the stem as stated in Section 4.2.2, we assume that the stem has length
zero, and the only one vertex in the cycle which links to two unmatched edges is open. Since all
other nodes in the blossom are matched, any edges going to vertices outside B are non-matching
edges.

(⇒) Suppose there is an M -augmenting path in G, denoted as P . If P does not go through the
blossom B, the path still exists in G/B. If P goes through B, because there is only one open
vertex in B, there must exist at least open vertex v′ in G which is an end of P but is not in
B. Because vB is open in G/B, the path from v′ to vB is an M/B-augmenting path in G/B.

(⇐) Suppose there is an M/B-augmenting path P ′ in G/B. If P ′ does not go through vB, P ′ still
exists in G.

If P ′ goes through vB, because vB is open, it must be an end of P ′; denote the other end of
P ′ by s. Suppose the edge (denoted as e) which connects vB in P ′ is originally connecting
some vertex v in B. If v is the open vertex in B, then s to v is an augmenting path in G.
Otherwise, there is a matched edge and an unmatched edge connecting v in B respectively.
Since e is unmatched, going from s to v to the open vertex in B via the direction of the
matched edge forms an M -augmenting path in G.

Since the process to get from P ′ to the M -augmenting path in G be done algorithmically in O(m)
time, this proves the second part of the theorem.

4.2.5 The Algorithm FindAugPath

The algorithm FindAugPath put all vertices in G in a layered structure to find an M -augmenting
path or a blossom, or correctly report that there is no M -augmenting path. The construction is
quite similar in spirit to the bipartite case, though with some differences since we may have odd
cycles.

At a high level, here’s the construction:

Mark all open vertices as being in layer 0.
For i = 0, 1, 2, . . .:

Mark all unmarked nodes with a non-matching edge to level 2i as being in layer 2i+1.
Mark all unmarked nodes with a matching edge to level 2i+1 as being in layer 2i+2.
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If there exists a “cross” edge between two nodes of the same layer, output a blossom or
augmenting path, else say “No M -augmenting path”.

An illustration of the algorithm is given in Figure 6.5. In order to argue correctness, it is worth
going over the steps again in more detail. Let Li denote the i-th layer vertices in the following
discussion.

A 

B 

C 

2 1 Layer 0 3 4 

Matched edge 

Unmatched edge 

Open vertex 

D X 

Y 

Z 

Figure 6.5: An illustration of FindAugPath algorihtm

1. Put all open vertices in L0 and mark them.

2. Given the even layer L2i, construct L2i+1 as follows. For each vertex u ∈ L2i and edge
(u, v) ∈ E\M , do the following:

(a) v is unmarked. Then put v in L2i+1, and mark it.

(b) v is marked. Let us look at the layer containing v.

i. v ∈ L2i. This means that there is an unmatched edge linking two vertices in the
same layer. This must result in an augmenting path or a blossom! Indeed, the way
we construct the layered graph, there are alternating paths P and Q from both u
and v to open vertices in L0. If P and Q do not intersect, then P ◦ (u, v) ◦Q gives
an M -augmenting path. If P and Q intersect, they must first intersect some vertex
w at an even layer, and the cycle containing u, v, w gives us the blossom, with the
stem being one path from w back to an open vertex in L0. (Success!)

ii. v is in a previous even layer L2j . If so, u should have been explored in the odd layer
L2j+1, which is impossible.

iii. v is in an odd layer. This is fine, we just observe that (u, v) is an even-odd edge.

3. Given the odd layer L2i+1, construct L2i+2 as follows. For each vertex u ∈ L2i+1 and matching
edge (u, v) ∈M , do the following:

(a) v is unmarked. Then add v to L2i+2, and mark v.

(b) v is marked. Again, consider what layer v belongs to.
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i. v ∈ L2i+1. This means that there is an matching edge linking two vertices in the
same layer. This must result in an augmenting path or a blossom. The analysis is
similar to Case b(i). (Success!)
As examples, in Figure 6.5, if there is an edge connecting A and B, we find a blossom
cycle containing three vertices A,B,D, with the stem from X to D. On the other
hand, an edge connecting C and B gives the augmenting path Y → B → C → Z.

ii. v is in previous layers. This is impossible because all previous explored vertices
are either open or matched using other edges. There cannot be a matching edge
connecting v to u.

From this construction, we observe that if the algorithm does not succeed, all edges are even-odd
edges. Now we can prove Theorem 6.14.

Proof. We now prove that if there is an M -augmenting path in G, the FindAugPath algorithm will
either return an M -augmenting path or a blossom.

For sake of contradiction, suppose that there exists an M -augmenting path P , and the algorithm
does not succeed. From the observation above, this means that when we constructed the layered
graph, each edge in G was an even-odd edge. Consider the augmenting path P , the starting open
vertex is in L0, which is an even layer. Thus the next vertex should be in an odd layer, and the
next one should be in an even layer, and so forth. Because there are odd number of edges in P ,
there are an even number of vertices, and hence the last vertex must be in an odd layer. However,
the last vertex is open, and hence in L0, an even layer. We get a contradiction.
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