
15-850: Advanced Algorithms CMU, Spring 2017
Lecture #3: Dynamic Graph Connectivity algorithms 01/30/17
Lecturer: Anupam Gupta Scribe: Hui Han Chin, Jacob Imola

Dynamic graph algorithms is the study of standard graph algorithmic problems in the setup where
the graph changes over time. For this lecture, it is assume that the vertex set of the underlying
graph is fixed and the graph changes on the edge set with update operations Insert(u,v)and
Delete(u,v), u and v being vertices. This is known as the edge arrival model

1 Dynamic Connectivity

Two connectivity queries that we would like to support are Connected(u,v), which ask if 2 vertices
are in the same connected component and Connected(G), which ask if the graph connected. While
this is a basic question to ask and many results have been shown, it has not been completely
resolved yet.
Lets consider 2 naive approach to dynamic connectivity for 2 vertices.

1. Track updates to the graph as an adjacency list and run DFS at every query. This would
take O(1) for update and O(m + n) for query.

2. Track the vertices pairwise connectivity as a n × n matrix. Check an entry in the matrix
during query. This would cost O(n2) for update since an edge can affect the connectivity
between 2 O(n) sized component, and O(1) for query.

This illustrates a trade-off between update and query. Below are some known results for dynamic
connectivity.

Authors Update Time Query Time Comments

Frederickson [Fre85] O(m
1
2 ) O(1) Deterministic. Worst case

Eppstein et al [EGIN97] O(n
1
2 ) O(1) Sparsification

Holm, de Lichtenberg, Throp
[HdLT98]

O(log2 n) O( logn
log logn) Amortized.

Kapron, King, Mountjoy
[KKM13]

O(log5 n) O( logn
log logn) Randomized. Worst case

Let Tu and Tq be the update time and query time respectively. The known lower bounds, due to
[PD04], are

Tu × log

(
Tq

Tu

)
≥ log n

Tq × log

(
Tu

Tq

)
≥ log n

1



2 Frederickson’s Algorithm

Below we provide two important ideas from Frederickson’s algorithm [Fre85] that achieve O(m
2
3 )

update time. The first idea is pretending that every vertex in G has maximum degree 3. We can
do this by treating any vertices v with degree d > 3 as d vertices connected to each other by a cycle
where each one is connected to a distinct neighbor of v. The case for d = 4 is shown below.

A B

C D

v

A B

C D

v1 v2

v3 v4

This transformation does not change the connectivity properties of G. Thus, we will assume for
the rest of this discussion that G has maximum degree 3.
The second idea is maintaining a clustered spanning forest F of G. We will cluster F in the following
way:

Lemma 3.1. Given any tree T = (V,E) and a parameter z, where |V | ≥ z, it is always possible
to cluster V into partitions V1, V2, . . . , Vk such that each subgraph formed by Vi is connected and
z ≤ |Vi| ≤ 3z.

Proof. We will use induction on the size of V . Our base case is all trees of size at most 3z; then,
nothing needs to be done. Assuming |V | > 3z, orient each edge (a, b) in T in the following way:
Remove (a, b) from the graph, and point to a if the tree with a in it is bigger than the tree with
b in it. Otherwise, point to b. Since T is now an oriented tree, there must be a vertex v0 which
is a sink. We will analyze the case where v0 has degree 3; the degree 1 and 2 cases are simpler.
Suppose v0 is connected to subtrees A, B, and C of sizes SA, AB, and SC , as shown below:

v0

B CA

Since SA + SB + SC + 1 > 3z, not all three can be less than z. If all three are greater than z,
then removing any edge connecting to v0 will produce two subtrees on which we can apply the
inductive hypothesis. So, without loss of generality, let SA < z and SB ≥ z. Since the edge e that
goes between B and v0 points to v0, we must have SA + 1 + SC ≥ SB ≥ z. Thus, cutting e will
produce two trees which both have size at least z, so they are able to be clustered by the inductive
hypothesis. The union of these clusters is a way of clustering T . Also, we can cluster T in O(|E|)
time using this recursive strategy.

2



For each T in F we will maintain a set of clusters C
(T )
1 , C

(T )
2 , . . . , C

(T )
sT if |T | > z where each cluster

has size between z and 3z. If |T | < z, then just maintain one cluster around the entire tree. Each

C
(T )
i will keep track of all edges with at least one endpoint in C

(T )
i . Also, we will keep track of

an adjacency list A(T ) which records which clusters in T have edges between them. Since the
maximum degree is at most 3, there are O(z) edges in total per cluster. The three operations are
outlined below:

• Insert(u,v): Let Tu be the tree containing u and Tv the tree containing v. If u = v, then we

can add the edge to Tu and be done. So, suppose u 6= v. Let C
(Tu)
i be the cluster containing

u and C
(Tv)
j be the cluster containing v. We will merge C

(Tu)
i and C

(Tv)
j . Merging is simply a

matter of looking through the edges and vertices of C
(Tu)
i and C

(Tv)
j , and takes O(z) time. If

the resulting cluster is too big, we will split it in the way described in the lemma which takes
O(z) time. The total time spent is O(z).

• Delete(u,v): Let T be the tree containing (u, v). Let C
(T )
i be the cluster containing u and

C
(T )
j be the cluster containing v. If i 6= j, then skip to the next paragraph. Assuming i = j,

we will check if deleting this edge makes C
(T )
i become disconnected. This takes O(z) time.

If it does, then we need to do more work; we will merge the two components of C
(T )
i to any

neighboring clusters if they are too small. If the resulting clusters are too big, we will split
them in the way described in the lemma.
Finally, we need to check if deleting (u, v) makes T become disconnected. We will do a graph
search on A(T ) to see if T is disconnected, and if so, determine which clusters should be split

off. This takes O
((

m
z

)2)
time total.

• Query: Since we have a spanning forest, queries are trivial to answer. We can do it in O(1)
time.

The runtime of Insert is O(z) and the runtime of Delete is O(z + (m/z)2). Setting z = m
2
3 gives

the best runtime for insertion and deletion of O(m
2
3 ).

3



3 Using Randomization in Dynamic Connectivity

Kapron-King-Mountjoy in SODA 2013 [KKM13] showed a dynamic connectivity algorithm that
uses randomization. It has O(polylogn) worst case update and O(polylogn) query with 1-sided
error, meaning “Yes” is always correct while “No” has probability 1

nc error.
Similiar to most of the techniques so far, KKM13 relies on maintaining a spanning forest using
dynamic trees. The main innovation is on identifying a candidate replacement edge on Delete.
The high level ideas of their technique are as follows:

1. Consider a model where there are a series of Insert followed by just one Delete. This is
needed to simplify the analysis for this lecture.

2. Each vertex,v, define a O(log n) bit label called l(v)

3. Each edge, e = (u, v)) define a label formed by the concatenation of the labels of its vertices
l(e) = 〈l(u)l(v)〉 for some ordering of the vertices.

4. Let the bit XOR operator be
⊕

.
For a given vertex V , define sign(v) =

⊕
l(e), e are incident edges to x

For a given subset of vertices S, define sign(S) =
⊕

v∈S sign(v)
Notice that sign(S) is

⊕
l(e), where e are edges which has exactly 1 endpoint in S.

5. The signature, sign(v) operation can be done on dynamic tree data structure, such as the
Range operation on link-cut trees, in O(log n)

Suppose on Delete(u,v), edge e is being remove. Let L be the subtree containing, u and R be the
subtree containing v.
Consider candidate replacement edges between L→ R in G\e.
If there is no replacement edge, meaning G\e is disconnected, then sign(L) = sign(R) = 0
If there is only 1 replacement edge, f , between L to R, then sign(L) = sign(R) = sign(f)
If there are many possible replacement edges then sign(L) or sign(R) does not help in identifying
the replacement edge.

The technique to find that replacement edge in the cutset, size greater than 1, is to sample. Suppose
O(log n) sets is maintain for each vertex. Sample an edge to the i-th set with probability 2−i while
doing Insert. For this to work, one of these sets needs to have exactly one unique edge. Notice
that if the cut set has C edges, then the probability of the logC th set having exactly 1 edge is:

C
1

2i
(1− 1

2i
)C−1 = C

1

2logC
(1− 1

2logC
)C−1 = (1− 1

C
)C−1 >

1

e
∈ O(1)

4



Hence, with high probability of 1 − 1
polylogn , there will be some set with exactly 1 edge, thus the

scheme works.

The first Delete on the tree is depends only on the state of the tree when delete occurs. However,
subsequent Deletes would have dependences on other Delete. Thus the calculations in the above
analysis cannot use indepedence the same way. Refer to [KKM13] for the technique to get around
this limitation in the analysis.

4 Amortized analysis for O(polylogn) deterministic bound

We would present a high level idea of [HdLT98] to a show dynamic connectivity algorithm with
O(log2 n) amortized bound.
Consider storing the graph G as log n subgraph, each with a minimum spanning forest. For each
edge, have a “level” that is an integer in [0, log n]. This would be the potential function used for
the amortized analysis. An edge is inserted at level 0 and moves up 1 level everything it is scanned
during a delete operation.
Let Gi be the subgraph of G consisting of the edges of level i and Fi be its spanning forest. Each of
the forests, Fi, is maintained by a dynamic tree such as Link-Cut Trees where the amortized cost
for each of these tree operations is O(log n).
2 invariants would be maintained throughout the execution of the algorithm.

1. I1: Every connected component of Fi has at most 2i vertices.

2. I2: Flogn ⊆ Flogn−1 · · · ⊆ F0. Also this means if u, v ∈ Gi are connected, then u, v are
connected in Fi

On Insert(u,v), add the edge to G0 and update the associated data structures in O(log n).

On Delete(u,v)=e, if edge, e is at level l, look at the tree, T which contains e. Split T into
sub tree L, R such that |L| ≤ |R| and raise the edges of L to level l + 1. This maintains I1 as

|L| ≤ |T |2 ≤
n
2l
∗ 1

2 by induction.

Now start scanning the non-tree edges incident to L at level l.
If the edge is within L, raise it to level l + 1.
If it goes to R, then we have a replacement edge, and add it to Fl, Fl−1, · · · , F0 to maintain I2.
Suppose that there no replacement edges at level l, then rerun the process at level l − 1.
Each edge charged O(log n) times thus it cost O(log2 n) per Update.

On Connected(u,v), check if both u, v are in the same component by I2. This can be done in
O(log n) time in the dynamic tree.

5 Key Ideas for the Lecture

1. Clustering and tree separators as seen in Fredrickson.

2. Amortized analysis by Holm et al.

3. Bit tricks such XOR to detect cuts and use of sampling as seen in KKM13.

5



References

[EGIN97] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsifica-
tion;a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696,
September 1997. 1

[Fre85] Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM Journal on Computing, 14(4):781–798, 1985. 1, 2

[HdLT98] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic determin-
istic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 79–89, New York, NY, USA, 1998. ACM. 1, 4

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in
polylogarithmic worst case time. In Proceedings of the Twenty-fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’13, pages 1131–1142, Philadelphia,
PA, USA, 2013. Society for Industrial and Applied Mathematics. 1, 3, 3

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In
Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC
’04, pages 546–553, New York, NY, USA, 2004. ACM. 1

6


	Dynamic Connectivity
	Frederickson's Algorithm
	Using Randomization in Dynamic Connectivity
	Amortized analysis for O(polylogn) deterministic bound
	Key Ideas for the Lecture

