5
Low-Stretch Spanning Trees

Given that shortest paths from a single source node s can be repre-
sented by a single shortest-path tree, can we get an analog for all-
pairs shortest paths? Given a graph can we find a tree T that gives us
the shortest-path distances between every pair of nodes? Does such
a tree even exist? Sadly, the answer is negative—and it remains neg-
ative even if we allow this tree to stretch distances by a small factor,
as we will soon see. However, we show that allowing randomiza-
tion will allow us to circumvent the problems, and get low-stretch
spanning trees in general graphs.

In this chapter, we consider undirected graphs G = (V, E), where
each edge e has a non-negative weight/length w,. For all u,vin V,
let d(u, v) be the distance between 1, v, i.e., the length of a shortest
path in G from u to v. Observe that the set V along with the distance

function d; forms a metric space. A metric space is a set V with a dis-
tance function d satisfying symime-

try (le., d(x,y) = d(y,x) for all

x,y € V) and the triangle inequality
d(x,y) < d(x,z) +d(z,y) for all

x,y,z € V). Typically, the definition also

The study of low-stretch spanning trees is guided by two high level asks for x =y <= d(x,y) = 0, but we
will merely assume d(x,x) = 0 for all x.

5.1 Towards a Definition

hopes:

1. Graphs have spanning trees that preserve their distances. That is,

given G there exists a subtree T = (V, Er) with Er C E such that We assume that the weights of edges in
E7 are the same as those in G.

dg(u,v) =~ dr(u,v) forall u,v e V.

2. Many NP-hard problems are much easier to solve on trees.

Supposing these are true, we have a natural recipe for designing
algorithms to solve problems that depend only on distances in G:

(1) find a spanning tree T preserving distances in G, (2) solve the
problem on T, and then (3) return the solution (or some close cousin)
with the hope that it is a good solution for the original graph. .

62

5.1.1 An All-Pairs Shortest Path Tree?

The boldest hope would be to find an all-pairs shortest path tree T, one
that ensures dr(u,v) = dg(u,v) for all u,v in V. However, such a
tree may not exist: consider Kj,, the clique of # nodes, with unit edge
lengths. The distance dg satisfies dg(x,y) = 1 for all x # y, and zero
otherwise. But any subtree T contains only n — 1 edges, so most pairs
of vertices x,y € V lack an edge between them in T. Any such pair
has a shortest-path distance dr(x,y) = 2, whereas dg(x,y) = 1.

5.1.2 A First Relaxation: Low-Stretch Spanning Trees

To remedy the snag above, let us not require distances in T be equal
to those in G, but instead be within a small multiplicative factor
« > 1 of those in G.

Definition 5.1. Let T be a spanning tree of G, and let &« > 1. We call

T a (deterministic) a-stretch spanning tree of G if Exercise: show that if T is any subtree
of G with the same edge weights, then

< .

o (1,0) < dr(u,0) < wdg(1,0). ol = e

holds for all u,v € V.

Suppose we had such an low-stretch spanning tree: we can try our
meta-algorithm out on the traveling salesperson problem (TSP):
given a graph, find a closed tour that visits all the vertices, and
has the smallest total length. This problem is NP-hard in general,
but let us see how an a-stretch spanning tree of G gives us an an
a-approximate TSP solution for G. The algorithm is simple:

Algorithm 7: TSP via Low-Stretch Spanning Trees

71 Find an a-stretch spanning tree T of G.
72 Solve TSP on T to get an ordering 7tt on the vertices.
7.3 return the ordering 7r.

Solving the TSP problem on a tree T is trivial: just take an Euler
tour of T, and let 7t7 be the order in which the vertices are visited.
Let us bound the quality of this solution.

Claim 5.2. 7T is an a-approximate solution to the TSP problem on G.

Proof. Suppose that the permutation 775 minimizes the length of the
TSP tour for G. The length of the resulting tour is

OPTg := Y _ dg(ng(i), mg(i+1)).
ie[n]

Since distances in the tree T are stretched by only a factor of «,

Y dr(ng(i), ng(i+1)) <a-) dg(ng(i), ng(i+1)). (5.1)
]

ie(n ien]

Now, since 77 is the optimal ordering for the tree T, and 71 is some
other ordering,

Z dT(ﬂT(i), 7TT(i+1)) < Z dT(ﬂG(i), 7TG(i+l)). (52)
i€ln

] i€[n]

OPTr

Finally, since distances were only stretched in going from G to T,

Yo de(mr(i), mr(i+1)) <) dr(er(i), mr(i+ 1)), (5.3)

ie(n] i€[n]

Putting it all together, the length of the tour given by 7t is

Y d(mr(i), mr(i+1)) <a-) de(mgl(i), me(i+1)),
i€n]

ien]
which is « - OPTg. O

Hence, if we had low-stretch spanning trees T with & < 1.49, we
would get the best approximation algorithm for the TSP problem.
(Assuming we can find T, but we defer this for now.) However, you
may have already noticed that the K;, example above shows that
« < 2is impossible. But can we achieve «# = 2? Indeed, is there
any “small” value for « such that for any graph G we can find an
a-stretch spanning tree of G?

Sadly, things are terrible: take the cycle C;, again with unit edge
weights. Now any subtree T is missing one edge from C,, say uv.
The endpoints of this edge are at distance 1 in C,, but dr(u,v) = n —
1, since we have to go all the way around the cycle. Hence, getting
a < (n—1) is impossible in general.

5.1.3 A Second Relaxation: Randomization to the Rescue

Since we cannot get trees with small stretch deterministically, let
us try to get trees with small stretch “on average”. We amend our
definition as follows:

Definition 5.3. A (randomized) low-stretch spanning tree of stretch a
for a graph G = (V, E) is a probability distribution D over spanning
trees of G such that for all u,v € V, we have

dg(u,v) <dr(u,v) for all T in the support of D, and
Er~pldr(u,0)] < adg(u,0) (5-4)

LOW-STRETCH SPANNING TREES 63

Exercise: show how to find, for any
graph G, a spanning tree T with stretch
a<n-—1.

Henceforth, all references to low-stretch
trees will only refer to this randomized
version, unless otherwise specified.

64

Observe that the first property must hold with probability 1 (i.e.,
it holds for all trees in the support of the distribution), whereas the
second property holds only on average. Is this definition any good
for our TSP example above? If we change the algorithm to sample a
tree T from the distribution and then return the optimal tour for T,
we get a randomized algorithm that is goodin expectation. Indeed,
(5.1) becomes

Y Eldr(ng(i), ng(i+1))] <a- Y dg(ng(i), ng(i+1)), (5.5)
i[n] i€[n]
because of the stretch guarantees only hold in expectation (and we
can use linearity of expectation). The rest of the inequalities hold un-
changed, including (5.3)—which requires the probability 1 guarantee
of Definition 5.6. (Do you see why?) Hence, we get

Y. Eldg(rr(i), mr(i+1)] <a-) do(mg(i), me(i+1)). (5.6)

i€[n] i€[n]

expected algorithm’s tour length OPTg

Even a randomized better-than-1.49 approximation for TSP would
still be amazing! And the algorithmic template here works not just
for TSP: any NP-hard problem whose objective is a linear function
of distances (e.g., many other vehicle routing problems, or the k-
median clustering problem) can be solved in this way. Indeed, the
first approximation algorithms for many such problems came via
low-stretch spanning trees.

Moreover, (randomized) low-stretch spanning trees arise in many
different contexts, some of which are not obvious at all. E.g., they can
be used to more efficiently solve “Laplacian” linear systems of the
form AX = b, where A is the Laplacian matrix of some graph G. To
do this, we let P be the Laplacian matrix of a low-stretch spanning
tree of G, and then we solve the system P~1A¥ = P~1¥ instead. This
is called preconditioning with P. It turns out that this preconditioning
allows certain algorithms for solving linear systems to converge faster
to a solution. Time permitting, we will discuss this application later
in the course.

5.2 Low-Stretch Spanning Tree Construction

But first, given a graph G, how can we find a randomized low-stretch
spanning tree for G with a small value of « (and efficiently)? As a
sanity check, let us check what we can do on the two examples from
before:

1. For the complete graph K;, choose a star graph centered at a uni-
formly random vertex of G. For any pair of vertices u, v, they are

at distance 1 in this star if either u or v is the center, else they are
at distance 2. Hence the expected distance is % 1+ "T_z 2=2- %

2. For the cycle Cy;, choose a tree by dropping a single edge uni-
formly at random. For any edge uv in the cycle, there is only a 1 in
n chance of deleting the edge from u to v. But when it is deleted, u
and v are at distance n — 1 in the tree. So

n—1

Blar(wo)] =" 2142 (n-1)=2- 2,

n
And what about an arbitrary pair of nodes u,v in C;;? We can use
the exercise on the right to show that the stretch on other pairs is
no worse!

While we will not manage to get & < 1.49 for general graphs (or
even for the above examples, for which the bounds of 2 — 2 are the
best possible), we show that « ~ O(log#n) can indeed be achieved.
The following theorem is the current best result, due to Ittai Abra-
ham and Ofer Neiman:

Theorem 5.4. For any graph G, there exists a distribution D over span-
ning trees of G with stretch « = O(lognloglogn). Moreover, the
construction is efficient: we can sample trees from this distribution D in
O(mlognloglogn) time.

Moreover, the stretch bound of this theorem is almost optimal, up
to the O(loglogn) factor, as the following lower bound due to Alon,
Peleg, Karp, and West shows.

Theorem 5.5. For infinitely many n, there exist graphs G on n vertices
such that any x-stretch spanning tree distribution D on G must have o =
Q(logn). In fact, G can be taken to be the n-vertex square grid, the n-
vertex hypercube, or any n-vertex constant-degree expander.

5.3 Bartal’s Construction

The algorithm underlying Theorem 5.4 is quite involved, but we
can give the entire construction of low-stretch trees for finite metric
spaces.

Definition 5.6. A (randomized) low-stretch tree with stretch a for a
metric space M = (V,d) is a probability distribution D over trees
over the vertex set V such that for all u,v € V, we have

d(u,v) <dr(u,v) for all T in the support of D, and

Er pldr(u,v)] <ad(u,v). (5.7)

LOW-STRETCH SPANNING TREES

Exercise: Given a graph G, suppose
the stretch on all edges is at most «.
Show that the stretch on all pairs of
nodes is at most «. (Hint: linearity of
expectation.)

65

66

The difference of this definition from Definition 5.6 is slight: we
now have a metric space instead of a graph, and we are allowed to
output any tree on the vertex set V (since the concept of subtrees
doesn’t make sense now). Note that given a graph G, we can com-
pute its shortest-path metric (V,dg) and then find a distribution over
(non-spanning) trees that approximate the distance in G. So if we
don’t really need the spanning aspect in our low-stretch trees—e.g.,
as in the TSP example—we can use results for this definition.

We need one more piece of notation: for a metric space M =
(V,d), define its aspect ratio A to be

maxXy £ycv d(u,v)

minu#vev d(”/ Z)) ‘

AM =

We will show the following theorem, due to Yair Bartal:

Theorem 5.7. For any metric space M = (V,d), there exists an efficiently
sampleable ap-stretch spanning tree distribution Dg, where

ap = O(lognlog Ap).

The proof works in two parts: we first show a good low-diameter

decomposition. This will be a procedure that takes a metric space The diameter of a set S is
maxy yes d(u,v), ie., the maximum

and a diameter bound D, and randomly partitions the metric space ! nu
distance between any two points in it.

into clusters of diameter < D, in such a way that close-by points are
unlikely to be separated. Then we show how such a low-diameter
decomposition can be used recursively to constuct a low-stretch tree.

5.3.1 Low-Diameter Decompositions

The notion of a low-diameter decomposition has become ubiquitous
in algorithm design, popping up in approximation and online algo-
rithms, and also in distributed and parallel algorithms. It's something
worth understanding well.

Definition 5.8 (Low-Diameter Decomposition). A low-diameter de-
composition scheme (or LDD scheme) with parameter § for a metric
M = (V,d) is a randomized algorithm that, given a bound D > 0,
partitions the point set V into “clusters” Cj, ..., C; such that
(i) forallie {1,...,t}, the diameter of C; is at most D, and
(ii) for all x,y € V such that x # y, we have
d(x,y)

Pr[x, y in different clusters] < B - D

Let’s see a few examples, to get a better sense for the definition:

1. Consider a set of points on the real line. One way to partition the
line into pieces of diameter D is simple: imagine making notches

LOW-STRETCH SPANNING TREES

on the line at distance D from each other, and then randomly
shifting them. Formally, pick a random value R € [0, D] uniformly
at random, and partition the line into intervals of the form [Di +
R,D(i+1)+R), fori € Z. A little thought shows that points x,y
are separated with probability exactly d(%.

2. The infinite 2-dimensional square grid with unit edge-lengths.
One way to divide this up is to draw horizontal and vertical lines
which are D/2 apart, and randomly shift as above. A pair x,y is

separated with probability exactly dg/’g) in this case. Indeed, this

approach works for k-dimensional hypergrids (and k-dimensional
{1-space) with probability k - d(ngy) — in this case the B parameter
is at most the dimension of the space.

3. What about lower bounds? One can show that for the k-dimensional
hypergrid, we cannot get = o(k). Or for a constant-degree n-
vertex expander, we cannot get § = o(logn). Details to come soon.

Since the aspect ratio of the metric space is invariant to scaling all
the edge lengths by the same factor, it will be convenient to assume
that the smallest non-zero distance in d is 1, so the largest distance is
A. The basic algorithm is then quite simple:

Algorithm 8: LDD(M = (V,d), D)

81 p < min(1, 41;;5").

8.2 while there exist unmarked point do

83 | © < any unmarked point.

84 | sample R, ~ Geometric(p).

85 | cluster C, < {unmarked u | d(v,u) < Ry}.
8.6 mark points in Cy.

87 return the resulting set of clusters.

Lemma 5.9. The algorithm above ensures that

1. the diameter of every cluster is at most D with probability at least 1 —
1/n, and

2. any pair x,y € V is separated with probability at most 2p d(x,y).

Proof. To show the diameter bound, it suffices to show that R, <
D/2 for each cluster Cy, because then the triangle inequality shows
that for any x,y € Cy,

d(x,y) <d(x,v)+d(v,y) <D/2+D/2=D.

Now the probability that R, > D/2 for one particular cluster is We use that 1 —z < ¢ forall z € R.

67

68

PrRy > D/2) = (1 p)P/2 < e PP/2 < o 2o8n =
By a union bound, there exists a cluster with diameter > D with
probability
1-Pr[3v € V, Ry > D/2] 21—%:1—1.
n n

To bound the probability of some pair u, v being separated, we
use the fact that sampling from the geometric distribution with pa-
rameter p means repeatedly flipping a coin with bias p and counting
the number of flips until we see the first heads. Recall this process
is memoryless, meaning that even if we have already performed k
flips without having seen a heads, the time until the first heads is still
geometrically distributed.

Hence, the steps of drawing R, and then forming the cluster can
be viewed as starting from v, where the cluster is a unit-radius ball
around v. Each time we flip a coin of bias p: it is comes up heads we
set the radius R; to the current value, form the cluster C, (and mark
its vertices) and then pick a new unmarked point v; on seeing tails,
we just increment the radius of v’s cluster by one and flip again. The
process ends when all vertices lie in some cluster.

For x,y, consider the first time when one of these vertices lies
inside the current ball centered at some point, say, v. (This must hap-
pen at some point, since all vertices are eventually marked.) With-
out loss of generality, let the point inside the current ball be x. At
this point, we have performed d(v, x) flips without having seen a
heads. Now we will separate x, y if we see a heads within the next
[d(v,y) —d(v,x)] < [d(x,y)] flips—beyond that, both x, y will have
been contained in v’s cluster and hence cannot be separated. But
the probability of getting a heads among these flips is at most (by a
union bound)

Fd(x,y)] p < 2d(x,y) p < Slogn 2.

(Here we used that the minimum distance is 1, so rounding up dis-
tances at most doubles things.) This proves the claimed probability of
separation. O

Recall that we wanted the diameter bound with probability 1,
whereas Lemma 5.9 only ensures it with high probability. Here’s a
quick fix to this problem: repeat the above process until the returned
partition has clusters of diameter at most D. The probability of any
pair u, v being separated by this last run of Algorithm 8 is at most
the probability of u, v being separated by any of the runs, which is at
most pd(u,v) times the expected number of runs,

d(u,v)

pd(u,v)-(1/(1—1/n)) <2pd(u,v) = O(logn) D

/ /i;; \\\\\\
\\/\/

N ’
N e
S o L’
Figure 5.1: A cluster forming around v
in the LDD process, separating x and
y. To reduce clutter, only some of the

distances are shown.

LOW-STRETCH SPANNING TREES

Lemma 5.10. The low-diameter decomposition scheme above achieves
parameter p = O(log n) for any metric M on n points.

5.3.2 Low-Stretch Trees Using LDDs

Now we can use the low-diameter decomposition scheme to get a
low-stretch tree (LST). Here’s the high-level idea: given a metric with
diameter A, use an LDD to decompose it into clusters with diameter
D < A/2. Build a tree recursively for each of these clusters, and then
combine these trees into one tree for the entire metric.

Recall we assumed that the metric had minimum distance 1 and
maximum distance A. Formally, we invoke the procedure LST below
with the parameters LST (metric M, [log, A]).

Algorithm 9: LST(metric M = (V,d), i)

Input: Invariant: diameter(M) < 2°
91 if |V| =1 then
9.2 ‘ return tree containing the single point in V.

93 Ci,...,C < LDD(M, D = 2°71),

94 forjin {1,...,t} do

9.5 M; < metric M restricted to the points in C;.

9.6 T/ — LST(M],& — 1).

9.7 Add edges of length 2% from root r; for tree Tj to the roots of
T, ..., T;.

9.8 return resulting tree rooted at ;.

We are ready to prove Theorem 5.7; we will show that the tree has
expected stretch O(BlogA), and that it does not shrink any distances.
In fact, we show a slightly stronger guarantee.

Lemma 5.11. If the random tree T returned by some call LDD(M’,) has
root v, then (a) every vertex x in T has distance d(x,r) < 20+1 gnd (b) the
expected distance between any x,y € T has E[dr(x,y)] < 85pd(x,y).

Proof. The proof is by induction on J. For the base case, the tree has
a single vertex, so the claims are trivial. Else, let x lie in cluster C i, SO
inductively the distance to the root of the tree T; is d(x,r;) < 2(6=1)+1
Now the distance to the new root r is at most 2° more, which gives
20 429 = 29*1 a5 claimed.

{}?/[ogeover, any pair x,y is separated by the LDD with probability
B 5

20-1 7

in which case their distance is at most
d(x,r) +d(r,y) <2001 42041 —4.2°,

Else they lie in the same cluster, and inductively have expected dis-

69

70

tance at most 8(6 — 1)Bd(x,y). Hence the expected distance is
E[d(x,y)] < Pr[x,y separated] - 4 - 2°+
Pr[x,y not separated] - 8(6 — 1)Bd(x,y)
<p D) 40y 85— 1)pd(xy)

20-1
=84Bd(x,y). O

This proves Theorem 5.7 because p = O(logn), and the iniitial
call on the entire metric defines 6 = O(logA). In fact, if we have a
better LDD (with smaller), we immediately get a better low-stretch
tree. For example, shortest-path metrics of planar graphs admit an
LDD with parameter f = O(1); this shows that planar metrics admit
(randomized) low-stretch trees with stretch O(logA).

It turns out this factor of O(lognlogA) can be improved to O(logn)—

this was done by Fakcharoenphol, Rao, and Talwar. Moreover, the
bound of O(logn) is tight: the lower bounds of Theorem 5.5 continue
to hold even for low-stretch non-spanning trees.

5.4 Metric Embeddings: a.k.a. Simplifying Metrics

We just how to approximate a finite metric space with a simpler
metric space, defined over a tree. (Loosely, “every metric space is
within O(logn) of some tree metric”.) And since trees are simpler
metrics, both conceptually and algorithmically, such an embedding
can help design algorithms for problems on metric spaces.

This idea of approximating metric spaces by simpler ones has
been extensively studied in various forms. For example, another fa-
mous result of Jean Bourgain (with an extension by Jirka Matousek)
shows that any finite metric space on n points can be embedded
into /-space with O((logn)/p) distortion *. Moreover, the Johnson-
Lindenstrauss Lemma, which we will see in a future chapter, shows
that any n point-submetric of Euclidean space can be embedded
into a (low-dimensional) Euclidean space of dimension at most
O(logn/€?), such that distances between points are distorted by a
factor of at most 1 & € . Since geometric spaces, and particularly,
low-dimensional Euclidean spaces, are easier to work with and rea-
son about, these can be used for algorithm design as well.

5.4.1 Historical Notes

Clean up. Elkin et al. 3 gave the first polylog-stretch spanning trees,
which took eight years following Bartal’s construction. (The first low-
stretch spanning trees had stretch 20(V/10871081087) by Ajon et al. 4,

LOW-STRETCH SPANNING TREES 71

which is smaller than #° for any € > 0 but larger than polylogarith-
mic, i.e., (logn)© for any C > 0.)

