
21
Approximation Algorithms via SDPs

Just like the use of linear programming was a major advance in the
design of approximation algorithms, specifically in the use of lin-
ear programs in the relax-and-round framework, another significant
advantage was the use of semidefinite programs in the same frame-
work. For instance, the approximation guaranteee for the Maximum

Cut problem was improved from 1/2 to 0.878 using this technique.
Moreover, subsequent results have shown that any improvements to
this approximation guarantee in polynomial-time would disprove the
Unique Games Conjecture.

21.1 Positive Semidefinite Matrices

The main objects of interest in semidefinite programming, not sur-
prisingly, are positive semidefinite matrices.

Definition 21.1 (Positive Semidefinite Matrices). Let A ∈ Rn×n be a
real-valued symmetric matrix and let r = rank(A). We say that A is
positive semidefinite (PSD) if any of the following equivalent conditions
hold:

a. xᵀAx ≥ 0 for all x ∈ Rn.

b. All of A’s eigenvalues are nonnegative (with r of them being
strictly positive), and hence A = ∑r

i=1 λiviv
ᵀ
i for λ1, . . . , λr > 0,

and vi’s being orthonormal.

c. There exists a matrix B ∈ Rn×r such that A = BBᵀ.

d. There exist vectors v1, . . . , vn ∈ Rr such that Ai,j =
〈
vi, vj

〉
for all

i, j.

e. There exist jointly distributed (real-valued) random variables
X1, . . . , Xn such that Ai,j = E[XiXj].

f. All principal minors have nonnegative determinants. A principal minor is a submatrix of A
obtained by taking the columns and
rows indexed by some subset I ⊆ [n].



250 semidefinite programs

The different definitions may be useful in different contexts. As an
example, we see that the condition in Definition 21.1(f) gives a short
proof of the following claim.

Lemma 21.2. Let A � 0. If Ai,i = 0 then Aj,i = Ai,j = 0 for all j. We will write A � 0 to denote that A is
PSD; more generally, we write A � B
if A − B is PSD: this partial order on
symmetric matrices is called the Löwner
order.

Proof. Let j 6= i. The determinant of the submatrix indexed by {i, j} is

Ai,i Aj,j − Ai,j Aj,i

is nonnegative, by assumption. Since Ai,j = Aj,i by symmetry, and
Ai,i = 0, we get A2

i,j = A2
j,i ≤ 0 and we conclude Ai,j = Aj,i = 0.

Definition 21.3 (Frobenius Product). Let A, B ∈ Rn×n. The Frobenius
inner product A • B, also written as 〈A, B〉 is defined as

〈A, B〉 := A • B := ∑
i,j

Ai,jBi,j = Tr(AᵀB).

We can think of this as being the usual vector inner product treat-
ing A and B as vectors of length n× n. Note that by the cyclic prop-
erty of the trace, A • xxᵀ = Tr(Axxᵀ) = Tr(xᵀAx) = xᵀAx; we will
use this fact to derive yet another of PSD matrices.

Lemma 21.4. A is PSD if and only if A • X ≥ 0 for all X � 0.

Proof. Suppose A � 0. Consider the spectral decomposition X =

∑i λixix
ᵀ
i where λi ≥ 0 by Definition 21.1(b). Then

A • X = ∑
i

λi(A • xix
ᵀ
i ) = ∑

i
λi xᵀi Axi ≥ 0.

On the other hand, if A � 0, there exists v such that vᵀAv < 0,
by 21.1(a). Let X = vvᵀ � 0. Then A • X = vᵀAv < 0.

Finally, let us mention a useful fact:

Fact 21.5 (PSD cone). Given two matrices A, B � 0, and scalars
α, β > 0 then αA + βB � 0. Hence the set of PSD matrices forms a
convex cone in Rn(n+1)/2. Here n(n + 1)/2 is the number of

entries on or above the diagonal in an
n× n matrix, and completely specifies a
symmetric matrix.21.2 Semidefinite Programs

Loosely, a semidefinite program (SDP) is the problem of optimizing a
linear function over the intersection of a convex polyhedron K (given
by finitely many linear constraints, say Ax ≥ b) with the PSD cone K.
Let us give two useful packagings for semidefinite programs.



approximation algorithms via sdps 251

21.2.1 As Linear Programs with a PSD Constraint

Consider a linear program where the variables are indexed by pairs
i, j ∈ [n], i.e., a typical variable is xi,j. Let X be the n× n dimensional
matrix whose (i, j)th entry is xi,j. As the objective and constraints are
linear, we can write them as C • X and Ak • X ≤ bk for some (not
necessarily PSD) matrices C, A1, . . . , Am and scalars b1, . . . , bm. An
SDP is an LP of this form with the additional constraint X � 0: Observe that if each of the matrices Ai

and C are diagonal matrices, say with
diagonals ai and c, this SDP becomes
the linear program

max{cᵀx | aᵀk x ≤ bk , x ≥ 0},
where x denotes the diagonal of the
PSD matrix X.

maximize
X∈Rn×n

C • X

subject to Ak • X ≤ bk, ∀k ∈ [m]

X � 0.

21.2.2 As Vector Programs

Consider a linear program where instead of linear constraints (re-
spectively, objective) on variables, we have linear constraints (objec-
tive) on the inner products of vector variables, i.e. a program of the
following form:

maximize
v1,...,vn∈Rn ∑

i,j
ci,j
〈
vi, vj

〉

subject to ∑
i,j

a(k)i,j
〈
vi, vj

〉
≤ bk, k ∈ [m].

In particular, note that we optimize over vectors in n-dimensional
space. By definition 4, we see that the two views are the same.

21.2.3 Examples of SDPs

Let A a symmetric n× n real matrix. Here is an SDP to compute the
maximum eigenvalue of A:

maximize
X∈Rn×n

A • X

subject to I • X = 1

X � 0

(21.1)

Lemma 21.6. SDP (21.1) computes the maximum eigenvalue of A.

Proof. Let X maximize SDP 21.1 (this exists as the objective is con-
tinuous and the feasible set is compact). Consider the spectral de-
composition X = ∑n

i=1 λixix
ᵀ
i where λi ≥ 0 and ‖xi‖2 = 1. The

constraint I • X = 1 implies ∑i λi = 1. Thus the objective value
A • X = ∑i λix

ᵀ
i Axi is a convex combination of xᵀi Axi. Hence with-

out loss of generality, X = yyᵀ is rank one with ‖y‖2 = 1. Thus, by
Courant-Fischer, OPT ≤ max‖y‖2=1 yᵀAy = λmax.



252 sdps in approximation algorithms

On the other hand, letting v be a unit eigenvector of A correspond-
ing to λmax, we have that OPT ≥ A • vvᵀ = vᵀAv = λmax.

Here is another SDP for the same problem: In fact, it turns out that this SDP is dual
to the one in (21.1). Weak duality still
holds for this case, but strong duality
does not hold in general for SDPs.
Indeed, there could be a duality gap for
some cases, where both the primal and
dual are finite, but the optimal solutions
are not equal to each other. However,
under some mild regularity conditions
(e.g., the Slater conditions) we can show
strong duality.

minimize
t

t

subject to tI − A � 0.
(21.2)

Lemma 21.7. SDP (21.2) computes the maximum eigenvalue of A.

Proof. The constraint tI − A � 0 is equivalent to the constraint
t− λ ≥ 0 for all eigenvalues λ, i.e., t ≥ λmax. Thus OPT = λmax.

21.3 SDPs in Approximation Algorithms

We now consider designing approximation algorithms using SDPs.
Recall that given a matrix A, we can check if it is PSD in (strongly)
polynomial time. In fact, if A is not PSD, we can return a hyperplane
separating A from the PSD cone. Thus using the ellipsoid method
(see Lecture 21), we can weakly approximate SDPs when OPT is
appropriately bounded. Informally, We know that there is an optimal LP

solution where the numbers are singly
exponential, and hence can be written
using a polynomial number of bits. But
this is not true in SDPs, in fact, OPT in
an SDP may be as large (or small) as
doubly exponential in the size of the
SDP. (See section 2.6 of the Matoušek
and Gärtner.)

Theorem 21.8 (Informal Theorem). Assuming that the radius of the fea-
sible set is at most exp(poly(〈SDP〉)), the ellipsoid algorithm can weakly
solve SDP in time poly(〈SDP〉, log( 1

ε )) up to an additive error of ε.

For a formal statement, see Theorem 2.6.1 of Matoušek and Gärt-
ner. However, we will ignore these technical issues in the remainder
of the lecture and instead suppose that we can solve our SDPs ex-
actly. More here.

21.4 The Max-Cut Problem and Hyperplane Rounding

Given a graph G = (V, E), the Max-Cut problem asks us to find a
partition of the vertices (S, V \ S) maximizing the number of edges
crossing the partition. This problem is NP-complete. In fact assuming
P 6= NP, a result of Johan Håstad shows that we cannot approximate
Max-Cut better than 17/16− ε for any ε > 0.

We begin by considering the greedy algorithm.

Lemma 21.9. The greedy algorithm cuts at least |E|/2-many edges.

Proof. Consider the following procedure: process the vertices v1, . . . , vn

in order and place each vertex in the partition that maximizes the
number of edges cut so far. Let δi be the number of edges from
vertex i to vertices j < i. Then the greedy algorithm cuts at least
∑i δi/2 = |E|/2 edges.



approximation algorithms via sdps 253

In particular, we see that OPT is suitably bounded and we can
hope to “solve” an SDP relaxation. Alternatively, we could have considered

the randomized algorithm placing each
vertex in S, S̄ uniformly independently
at random. Then the expected number
of cut edges is |E|/2 whence by the
probabilistic method OPT ≥ |E|/2. We
see that both the greedy and random-
ized algorithms are 1/2-approximations.

Corollary 21.10. Let OPT be the optimal value of Max-Cut. Then |E|/2 ≤
OPT ≤ |E|.

We now see a famous example of an SDP-based approximation
algorithm due to Goemans and Williamson. Begin by noting that the
Max-Cut problem can be written as the following integer program.

maximize
x1,...,xn∈R

∑
(i,j)∈E

(xi − xj)
2

4

subject to xi ∈ {−1,+1}, ∀i.

(21.3)

In this program, each element must be assigned one of two labels
{−1,+1}. The objective value gained from an edge connecting to
vertices in different partitions is 1 and is 0 otherwise, thus we see that
this IP captures Max-Cut. We will relax this program by replacing the
variables xi with vector variables vi ∈ Rn.

maximize
v1,...,vn∈Rn ∑

(i,j)∈E

‖vi − vj‖2

4

subject to ‖vi‖ = 1, ∀i.

(21.4)

Noting that ‖vi − vj‖2 = ‖vi‖2 + ‖vj‖2 − 2
〈
vi, vj

〉
= 2− 2

〈
vi, vj

〉
, we

rewrite this vector program as

maximize
v1,...,vn∈Rn ∑

(i,j)∈E

1−
〈
vi, vj

〉

2

subject to 〈vi, vi〉 = 1, ∀i.

(21.5)

The SDP relaxation for the Max-Cut problem was first introduced
by Svata Poljak and Franz Rendl. It is clear that this is a relaxation of
the original integer program as given a {−1,+1} valued solution, we
can consider the corresponding {−e1,+e1}-valued solution where e1

is the first standard basis vector.
Our goal is now to find a solution to Max-Cut given a solution to

the Max-Cut SDP. To do so, we are going to use a method known as
hyperplane rounding.

Assume we have a solution {vi} to the Max-Cut SDP. We want
to find some partition of the vectors {vi} placing vectors that are
close together in the same set and vectors that are far from each other
in distinct sets. To do this, we will randomly sample a hyperplane
through the origin and partition the vectors according to the side on
which they land. Formally, this corresponds to picking a vector g ∈
Rn according to the standard Gaussian and setting S = {i| 〈vi, g〉 ≥
0} (meaning vi is on the “nonnegative” side of the hyperplane).

v1

v2

v3

v4

g

Figure 21.1: A geometric picture of
Goemans-Williamson randomized
rounding



254 the max-cut problem and hyperplane rounding

We will argue that this procedure gives us a good cut in expecta-
tion then repeat the procedure to achieve an algorithm succeeding
with high probability.

Theorem 21.11. For any ε > 0, the Goemans-Williamson randomized
rounding algorithm returns a partition cutting at least αGW := (0.87856−
ε) · SDPOpt-many edges with high probability.

Proof. Let’s first compute the expected number of cut edges:

E[# edges cut] = ∑
(i,j)∈E

Pr[(i, j) is cut].

For some edge (i, j) ∈ E, let

θij := cos−1(
〈
vi, vj

〉
)

be the angle between vectors vi and vj. We will work in the plane
containing vi, vj and the origin. Let g̃ be the projection of g onto this
plane. Note that the cut defined by g and g̃ agree on this plane. The
probability of edge (i, j) being cut is the probability that the vector
perpendicular to g̃ lands between vi and vj. As the projection onto
a subspace of the standard Gaussian is a standard Guassian, this
probability is exactly θij/π. The following figure illustrates the proof.
Notice that we cut edge (i, j) when the vector perpendicular to g̃
lands in the grey area, which accounts for 2θij/2π-fraction or θij/π-
fraction of the directions.

θij

vjvi

g̃

Figure 21.2: Angle between two vectors

Recall

SDPOpt := ∑
(i,j)∈E

1− cos(θi,j)

2
.

Observe that using the probability computed above we have

E[# edges cut] = ∑
(i,j)∈E

θij/π.

Thus supposing the existence of an α such that

θ/π ≥ α
1− cos(θ)

2

for all θ ∈ [0, π], we have that

E[# edges cut] ≥ α · SDPOpt,

where SDPOpt is the solution to the Max-Cut SDP. Such α exists and
has value αGW = 0.87856. Since E[# edges cut] ≥ αGW · SDPOpt, by
Markov’s inequality we obtain an (αGW − ε)-approximation to the
Max-Cut-SDP for any constant ε.

Finally noting that SDPOpt ≥ Opt, we get the following result.



approximation algorithms via sdps 255

Corollary 21.12. For any ε > 0, there is a (.87856− ε)-factor approxima-
tion algorithm for Max-Cut

Note that this is a randomized algorithm and the result only holds
in expectation. However, it is possible to derandomize this result to
obtain a polynomial time deterministic algorithms with the same
approximation ratio.

As a follow-up to this analysis, one can ask some relevant ques-
tions. First, can we get a better approximation factor? A result of
Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell
says that a better-than-αGW-approximation would refute the Unique
Games Conjecture.

Also, one can ask if similar rounding procedures exist for an
linear-programming relaxation as opposed to the SDP relaxation
here. Unfortunately the answer is again no: a result of Siu-On Chan,
James Lee, Prasad Raghavendra, and David Steurer shows that no
polynomial-sized LP relaxation of Max-Cut can obtain a non trivial
approximation factor, that is, any polynomial sized LP of Max-Cut
has an integrality gap of 1/2.

21.5 Coloring 3-Colorable Graphs

Suppose we are given a graph G = (V, E) and a promise that there is
some 3-coloring of G. What is the minimum k such that we can find a
k-coloring of G in polynomial time? It is well-known that 3-coloring a
graph is NP-complete, but what if we want to color it with O(nα), for
some fixed constant α? We will see that is easy to achieve a O(

√
n)

coloring and then will use semidefinite programming to improve this
to a Õ(nlog6(2)) coloring.

Lemma 21.13. Let G be a 2-colorable graph, then we can find a 2-coloring
of G in linear time.

Proof. Being 2-colorable is equivalent to being bipartite. Thus, we can
pick an arbitrary node and color it with color 1. Then, we color its
neighbors with color 2, its neighbors’ neighbors with color 1 and so
on. We can do this using a depth-first search in the graph, so it runs
in linear time.

Lemma 21.14. Let ∆ be the maximum degree of a graph G, then we can
find a ∆ + 1 coloring of G in linear time.

Proof. We have the following iterative algorithm: pick some uncol-
ored vertex and color it with a color different from all of its neigh-
bors. Since every vertex has at most ∆ colors, we never run out of
colors to assign to a vertex. It is easy to see this can be done in linear
time.



256 coloring 3-colorable graphs

We will now describe an algorithm that colors a 3-colorable graph
G with O(

√
n) colors, originally due to Avi Wigderson: while the

maximum degree of G is greater than
√

n, pick some vertex v with
degree larger than

√
n. Color it with a new color. Consider the sub-

graph induced by the neighbors of v. Since G is 3-colorable and we
have to color v with some color, the subgraph of v’s neighbors is 2-
colorable, so we can find a 2-coloring in linear time by Lemma 21.13

using two new colors. Now remove v and its neighbors from the
graph. We removed at least

√
n nodes and used at most 3 new colors,

so after
√

n rounds we will have used at most 3
√

n colors and the
graph will have maximum degree

√
n. Finally, we color the remain-

ing graph with at most
√

n + 1 colors using Lemma 21.14. We used a
total of 4

√
n + 1 colors, so this fits our original goal. We conclude,

Lemma 21.15. There is an algorithm that colors a 3-colorable graph with
with O(

√
n) colors.

21.5.1 A better solution using SDPs

We will now use semidefinite programming to get an improved
Õ(nlog6(2)) coloring, using a result by David Karger, Rajeev Mot-
wani, and Madhu Sudan. The core method for this result is an algo-
rithm that colors a 3-colorable graph with maximum degree ∆ using
Õ(∆log3(2)) colors, which we will describe first.

For some parameter λ which we will pick later, consider the fol-
lowing SDP:

find v1, . . . , vn ∈ Rn

subject to
〈
vi, vj

〉
≤ λ ∀(i, j) ∈ E

〈vi, vi〉 = 1 ∀i ∈ V

(21.6)

Notice this is a feasibility SDP, we are not optimizing any objec-
tive. Why is this SDP relevant to our problem? The goal is to have
vectors clustered together in groups, such that each cluster represents
a color. Intuitively, we want to have vectors of adjacent vertices to be
far apart, so we want their inner product to be close to −1 (recall we
are dealing with unit vectors, due to the last constraint) and vectors
of the same color to be close together.

Lemma 21.16. For 3-colorable graphs, SDP 21.6 is feasible with λ = −1/2.

Proof. Consider vector placement shown in the following figure:

120◦

120◦

120◦

Figure 21.3: Optimal distribution of
vectors for 3-coloring graph

It is clear that if the graph is 3-colorable, we can have all vertices
with color 1 align with the red vector, all vertices with color 2 align
with the blue vector and all vertices with color 3 align with the green
vector. For every edge (i, j) ∈ E, we have that

〈
vi, vj

〉
= cos

( 2π
3
)
=

−1/2.



approximation algorithms via sdps 257

It may seem like we are done, since if we solve the above SDP with
λ = −1/2 we could expect it to look like the figure above. Unfortu-
nately, in n-dimensions we can have an exponential number of cones
of angle 2π

3 , like the figure below shows, so we cannot cluster vectors
as easily as in the above example.

Figure 21.4: Dimensionality problem of
2π/3 far vectors

To solve this issue, we are going to apply a technique similar to
how we rounded Max-Cut SDP solutions, namely using random
hyperplanes to separate vectors. Consider the following algorithm:
for some parameter t we will pick later, pick t random hyperplanes.
Formally, we pick gi ∈ Rn from a standard Gaussian for i ∈ [t].
Observe that these split the Rn unit sphere into at most 2t regions.
Now, for every set of vectors on the same region induced by these
random vectors, we assign them a unique color. Formally, this means
that if vi and vj are such that sign(〈vi, gk〉) = sign(

〈
vj, gk

〉
), for all

k ∈ [t], then i and j will have the same color, otherwise they will have
different colors. This may color some adjacent vertices with the same
color, so to fix this while there is any edge between vertices of the
same color, uncolor both endpoints.

At the end of this procedure, we will have some colored vertices
which we can remove from the graph and then repeat the same pro-
cedure on the remaining graph until we color every vertex. Note that
since we use t hyperplanes, we add at most 2t new colors per round.
The hope with such an approach is that in each round we remove
enough vertices from the graph such that the number of required
iterations is small.

Lemma 21.17. If, in expectation, half of the vertices are colored in a sin-
gle round, then the expected number of rounds to color the whole graph is
O(log n).

Proof. Let T be the random variable which is the number of rounds
needed to color the whole graph.

By Markov’s inequality, at least 1/4 of the vertices are colored in
a single round with probability 1/3. Let Xi be the random variable
that is 1 if at least 1/4 of the vertices are colored in the ith round
and 0 otherwise. Thus Xi = 1 with probability at least 1/3. Let T′

be the random variable which is the number of rounds needed for
∑ Xi ≥ log4(n), then T ≤ T′.

Note E[T′] is the expected number of rounds to get the first suc-
cess, plus the expected number of rounds to the second success etc.
Note also that the expected number of rounds to get a single success
is a geometric random variable with mean at most 3. Combining,
E[T] ≤ E[T′] ≤ 3 log4(n) = O(log n).

The previous claim means that if the expected fraction of vertices
removed per iteration is 1/2, then we can color the whole graph with



258 coloring 3-colorable graphs

a blow up of O(log n). We compute the expected number of vertices
remaining after a given iteration.

E[remaining] = ∑
i∈V

Pr[i uncolored]

≤ ∑
i∈V

∑
(i,j)∈E

Pr[i uncolored because of j]. (21.7)

As we saw in the Max-Cut section, we know that the probability i has
the same color as j is exactly the probability that the projection of gk

onto the plane containing vi, vj and the origin is in the dual cone to
vi and vj for all k ∈ [t]. For a given hyperplane, the probability that Contrary to the Max-Cut case, we are

looking at the case where none of the
hyperplanes separate vi and vj, which
is why we consider gk instead of its
perpendicular.

vi, vj land on the same side is exactly (π − θij)/π, which is at most
1/3 (recall we built our SDP such that θij ≥ 2π

3 for edges (i, j)). So
plugging this into the above,

(eq. 21.7) ≤ n · ∆ · (1/3)t. (21.8)

Since we want the expected fraction of vertices removed to be at
least 1/2, i.e. we want E[remaining] to be at most 1/2. We compute the
necessary value of t,

n · ∆ · (1/3)t ≤ n/2⇒ t ≥ log3(2∆) (21.9)

We will take t = log3(2∆). Thus we use at most 2log3(2∆) =

(2∆)log3(2) colors in each round. Combining this with the above
claim, we get the following lemma.

Lemma 21.18. There is an algorithm that colors a 3-colorable graph with
maximum degree ∆ with Õ(∆log3(2)) colors.

This gives us an algorithm that uses at most Õ(nlog3(2)) ≈ Õ(n0.63),
which is even worse than our initial O(

√
n) algorithm. However we

can combine the ideas from that algorithm with the ideas of this new
algorithm as follows.

Theorem 21.19. There is an algorithm that colors a 3-colorable graph with
with Õ(nlog6(2)) colors.

Proof. Let σ be a parameter we will set later. Remove all vertices with
degree greater than σ and color them and their neighbors with 3 new
colors, as in the O(

√
n) algorithm (Lemma 21.15). This requires at

most 3n/σ new colors and the resulting graph has maximum degree
σ. Now we can use Lemma 21.18 to color the remaining graph with
σlog3(2) colors.

In total, this procedure uses Õ(σlog3(2) + n/σ) colors. We pick
σ = nlog6(3) to balance terms and resulting in a procedure that uses at
most Õ(nlog6 2) ≈ Õ(n0.38) colors.



approximation algorithms via sdps 259

21.5.2 Final notes on coloring 3-colorable graphs

Until recently the best combinatorial algorithm to color 3-colorable
graphs in polynomial was due to Avrim Blum and David Karger
and uses at most O(n3/8). This is even better than the Õ(nlog6 2) we
obtained, however, it is possible to improve the rounding procedure
to obtain an algorithm that uses Õ(∆1/3

√
ln ∆) colors — in turn using

balancing trick, we get an algorithm using Õ(n1/4) colors. Currently,
the state of the art is O(n0.199) colors by Ken-Ichi Kawarabayashi
and Mikkel Thorup, and also shows a combinatorial algorithm that
achieves Õ(n4/11).


