Lec 25: Online Algorithms

- Competitive Analysis
- Rent-'n'-Buy
- Paying
- Other examples?

Sequential Revision Maley

- Regret minimization
 - Mistake bound model
 - Competitive analysis
 - Competitive ratio

Regret
- r_t before w_t
- Best fixed action in hindsight
- Additive loss

Compete
- T_t before w_t
- Comp to $OPT(t)$
- Mult loss
Model

→ at each time:
 get a request \(\sigma_t \)
 at a time taken by \(\text{CPU} \)

→ cost of \(\sigma_t \) for \(\sigma \)

\[\sigma = \sigma_0, \sigma_1, \ldots, \sigma_t \]

\[A(\sigma) \]

\[\text{total cost } (\sigma) \]

\[\# \text{pge evict } (\sigma) \]

\[\text{OPT}(\sigma) = \min_{\sigma \in \sum} \# \text{pge evict} \text{ on } \sigma \]

Paying/Caching

→ page requested
→ page in cache
→ page evicted

Mem

\[n \]

Cache

\[k < n \]

CPU

Page replacement policy??
Competitive Ratio of Alg

\[\rho = \max_\sigma \frac{\text{ALG}(\sigma)}{\text{OPT}(\sigma)} \]

worst case

all request sequences

online algo for \(\sigma \) optimal for \(\sigma \)

\[\text{ALG}(\sigma) \leq \rho \cdot \text{OPT}(\sigma) \]

Randemized Alg

\[\rho = \max_\sigma \frac{\mathbb{E}[\text{ALG}(\sigma)]}{\text{OPT}(\sigma)} \]

worst case on all inputs

alg is randomized

det quantity

\(\text{adv. fixes } \sigma \text{ up front (oblivious adversary)} \)

(adaptive?? \(\rightarrow \) worst, discuss these today)
Rent or Buy / Ski rental

rent $1/day length season unknown
buy $B

Y Y Y Y Y N N N N

i=i

Always rent for days $A_1, A_2, \ldots, A_B, A_B+1, \ldots, A_k$
then buy on day i

Claim: rent for $B-1$ days and then buy $(A_B \leq)$ has crs ties $2-\frac{1}{B}$
and this is optimal
Pf:

\[
\frac{A_G(l)}{OPT(l)} = \begin{cases}
\frac{l(l-1) \cdots (l-B+1)}{B!} & \text{if } l \leq B-1 \\
\min(l, B) & \text{otherwise}
\end{cases}
\]

Best possible for all pairs \(A_G, A_i \)

Show input \(I_e \) of \(\min(A_G(I_e)) \geq 2^{-B} \)

Correct answer for det \(A_{ge} = 2^{-\frac{1}{B}} \).

Q: do better for randomized algs?
Rand alg in a prob. dmhs on del edges

\[I_g = \text{seam length} \]

\[(B = 4) \]

<table>
<thead>
<tr>
<th>(A_i)</th>
<th>(I_1)</th>
<th>(I_2)</th>
<th>(I_3)</th>
<th>(I_{\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>1/4</td>
<td>2/4</td>
<td>3/4</td>
<td>4/4</td>
</tr>
<tr>
<td>(p_2)</td>
<td>1/2</td>
<td>5/2</td>
<td>5/3</td>
<td>4/4</td>
</tr>
<tr>
<td>(p_3)</td>
<td>1/2</td>
<td>6/3</td>
<td>6/4</td>
<td>4/4</td>
</tr>
<tr>
<td>(p_4)</td>
<td>1/2</td>
<td>2/3</td>
<td>7/4</td>
<td></td>
</tr>
</tbody>
</table>

Fact 1: \(I_{\infty} \) always

\[I_{p_i, I_5} \ldots \]

Fact 2: if \(g \) than no point pluses \(A_5 \) ...

\[b_1 + b_2 + b_3 + b_4 = 1 \quad b_i \geq 0 \]

\[4b_1 + 2b_2 + 3b_3 + 2b_4 \leq C \]

\[4b_1 + 5b_2 + 2b_3 + 2b_4 \leq 2C \]

\[4b_1 + 5b_2 + 6b_3 + 3b_4 \leq 3C \]

\[C = \frac{1}{1 - (1 - \frac{1}{2})^4} \quad \frac{c}{c + 1} \]

\[\sqrt{c} \]
n pages
k cache k < n
\(\sigma_1, \sigma_2, \ldots, \sigma_t \ldots \)
\(\sigma_i \in [n] \)

Deterministic: LRU, LFU, FIFO

Good / Bad: All of these are k-competitive (UB)

Randomized Algorithms:

Randomized 1-Bit LRU

Good: \(O(\log k) \) competitive

Randomized Marley=

\[\leq \text{optimal} \]

: No randomized algo can be better than \(O(\log k) \)
Random Markov:

in each phase,
unmark all pages.

\[\rightarrow \text{When get request } \sigma_t \]

if \(\sigma_t \notin \text{cache} \)
\[\left\{ \begin{array}{l}
\text{if no unmarked page, end phase.} \\
\text{else mark random unmarked page, buy in } \sigma_t \\
\end{array} \right. \]

mark \(\sigma_t \)

\[k=4 \]
\[1 \ 2 \ 3 \ 4 \]

\[1 \ 2 \ 3 \ 5 \ 4 \ 3 \ 4 \ 1 \ 5 \ 2 \]
Airline Seat

How many people sit not in their own seat, in expectation?

\[\leq H_K = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{K} \]
in each phase

Argue

$E[\# \text{ evictions}] \leq c \cdot \log k$

OPT:

Random Marley

Selector, Karp, Fiat, Luby,