Linear Units, Perceptrons, and the LMS Algorithm

15-496/782: Artificial Neural Networks David S. Touretzky

Spring 2004

Linear Units and Perceptrons

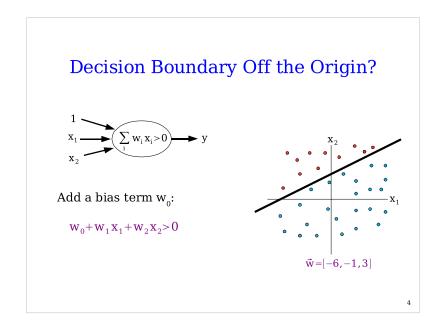
Perceptrons were the original "neural nets".

Rosenblatt (1962)
Principles of Neural Dynamics

Minsky & Papert (1969)
Perceptrons

Bernie Widrow:
weather prediction
adaptive equalization in modems

Peceptrons Are Linear Classifiers $x_1 \underbrace{w_1}_{w_2} \underbrace{\sum_i w_i x_i > 0}_{x_1} y$ $net = \sum_i w_i x_i$ $y = \begin{bmatrix} 1 & \text{if net} > 0 \\ 0 & \text{otherwise} \end{bmatrix}$ $\vec{w} = [-1, 3]$



The Decision Boundary is Always Perpendicular to the Weight Vector

$$\vec{w} = \begin{bmatrix} -6, & -1, & 3 \end{bmatrix}$$
 slope of weight vector = $w_2/w_1 = -3$ slope of decision boundary = 1/3 (If a line has slope m, the perpendicular has slope -1/m.)
$$\begin{bmatrix} w_1, w_2 \end{bmatrix} -6 - x_1 + 3 \cdot x_2 = 0$$

Scaling the weight vector has no effect on the decision boundary!

5

Make the Weight Vector Touch the Decision Boundary

Let
$$\vec{\mathbf{w}} = \begin{bmatrix} -2, 3, 4 \end{bmatrix}$$

$$\mathbf{Let} \vec{\mathbf{v}} = \mathbf{h} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$\mathbf{w}_0 + \mathbf{w}_1 \mathbf{v}_1 + \mathbf{w}_2 \mathbf{v}_2 = 0$$

$$\mathbf{w}_0 + \mathbf{w}_1^2 \mathbf{h} + \mathbf{w}_2^2 \mathbf{h} = 0$$

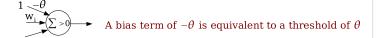
$$\mathbf{h} = \frac{-\mathbf{w}_0}{\mathbf{w}_1^2 + \mathbf{w}_2^2} = \frac{2}{25}$$

$$\vec{\mathbf{v}} = \begin{bmatrix} \frac{6}{25}, \frac{8}{25} \end{bmatrix}$$

Thresholds vs. Biases

$$y = \begin{cases} 1 & \text{if } \sum w_i x_i > \theta \\ 0 & \text{otherwise} \end{cases}$$
Learning rules adjust both \vec{w} and θ

Simpler solution: $\mathbf{w}_0 = -\theta$



Perceptron Learning Rule

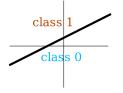
Initialize $\vec{w} \leftarrow 0$

For each $\vec{x}_{_{i}} \\ in training set:$

$$net\!=\!\vec{x}_{_i} \; \vec{w}$$

$$y = \begin{cases} 1 & \text{if net} > 0 \\ 0 & \text{otherwise} \end{cases}$$

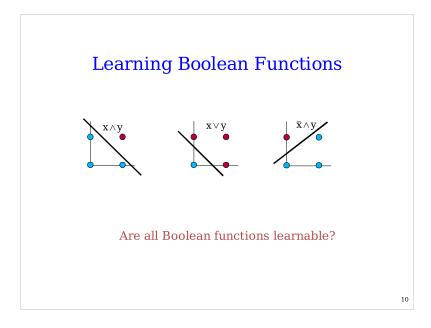
$$\vec{w} \leftarrow \begin{vmatrix} \vec{w} & \text{if } y = d_i \\ \vec{w} + \vec{x}_i & \text{if } y < d_i \\ \vec{w} - \vec{x}_i & \text{if } y > d_i \end{vmatrix}$$

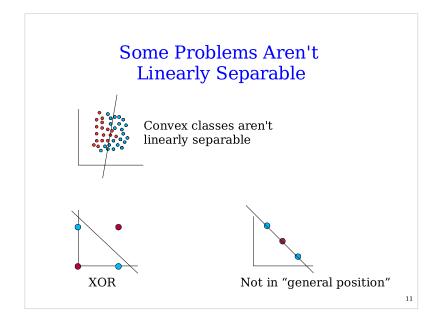


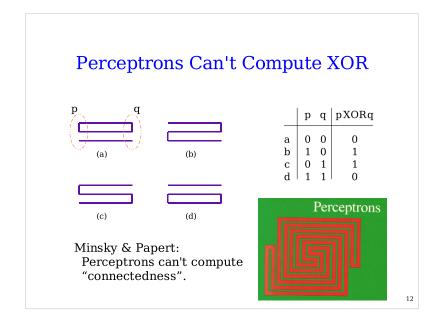
Repeat until all \vec{x}_i classified correctly.

How to Run the Matlab Demos

- ▶ matlab
- cd /afs/cs/academic/class/15782-s04/matlab/perceptron
- > ls
- perceptron







Prove That Perceptrons Can't Compute XOR

	\mathbf{x}_1	\mathbf{x}_2	d
1.	0	0	0
2.	1	0	1
3.	0	1	1
4.	1	1	0

5.
$$w_0 \le 0$$
 (by 1)
6. $-w_1 < w_0$ (by 3)

7.
$$-\mathbf{w}_{2} < \mathbf{w}_{0}$$
 (by 2)

8.
$$w_1 + w_2 < -w_0$$
 (by 4)

9.
$$0 < w_0$$
 (add 6, 5)
10. $w_0 > 0$ (by 9)

Lines 5 and 10 conflict

$$1 \underbrace{\begin{array}{c} w_0 \\ w_1 \\ \hline \end{array}} \sum > 0$$

$$w_0 + w_1 x_1 + w_2 x_2 >$$

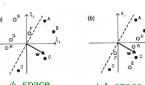
13

15

Let's Use +1/-1 Outputs

Let ϕ^n = input pattern n Let t^n = class of pattern n (-1 or +1)

If a problem is linearly separable, all $\phi^n t^n$ lie on the same side of the decision boundary.



14

Vectors

$$\vec{v} = [2, 3]$$

$$\|\vec{v}\| \, = \, \sqrt{2^2\!+\!3^2} \, = \, \sqrt{13}$$

= unit vector in same direction as \vec{v}

Dot Product

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \cos \theta$$

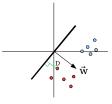
$$\vec{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$$

$$\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$$

$$\vec{u} \cdot \vec{v} \ = \ u_1 v_1 \! + \! u_2 v_2 \! + \! u_3 v_3$$

If \vec{u} is a unit vector, then $\vec{u} \cdot \vec{v}$ is the length of the projection of \vec{v} along \vec{u} .

Easy vs. Hard Problems



$$D(\bar{w}) \, = \, \frac{1}{\|\vec{w}\|} \underset{i}{min}(\vec{w} {\cdot} \phi^i t^i)$$

$$D_{max} = \max_{\vec{w}} D(\vec{w})$$

Large $D_{max} \rightarrow easy$ problem. $D_{max} < 0 \rightarrow not$ linearly separable.

For AND, $D_{\text{max}} = \frac{1}{\sqrt{17}}$. For XOR, $D_{\text{max}} = \frac{-1}{\sqrt{3}}$

17

Perceptron ConvergenceTheorem Rosenblatt (1962)

This theorem is very famous.

The version that follows is from Bishop (1995), based on Hertz, Krogh, and Palmer (1991).

Theorem:

If a problem is linearly separable, then a perceptron will learn it in a <u>finite number</u> of steps.

18

Proof of the Theorem (1)

Assume a vector $\vec{\mathbf{w}}$ exists that correctly classifies all points.

Then $\vec{\mathbf{w}} \cdot (\boldsymbol{\phi}^n t^n) > 0$ for all n.

At each step of the algorithm:

 $\bar{\boldsymbol{w}}^{(\tau)} \,=\, weights \; at \; step \; \boldsymbol{\tau}$

 ϕ^{n} is the misclassified vector at the current step

 $\bar{\boldsymbol{w}}^{(\tau+1)}\!\!\leftarrow\!\bar{\boldsymbol{w}}^{(\tau)}\!+\!\boldsymbol{\phi}^{n}\,\boldsymbol{t}^{n}$

Suppose ϕ^n has been misclassified τ^n times so far.

Total misclassifications $\tau = \sum_{n} \tau^{n}$

Therefore $\boldsymbol{\bar{w}}^{(\tau)} = \sum_{n} \boldsymbol{\tau}^{n} \boldsymbol{\phi}^{n} \boldsymbol{t}^{n}$

(assuming $\bar{\mathbf{w}}^{(0)} = \mathbf{0}$)

Proof of the Theorem (2)

Find a lower bound on the growth rate of $\hat{\mathbf{w}} \cdot \bar{\mathbf{w}}^{(\tau)}$.

$$\hat{\mathbf{w}} \cdot \bar{\mathbf{w}}^{(\tau)} = \sum_{n} \tau^{n} \hat{\mathbf{w}} \cdot \boldsymbol{\phi}^{n} \cdot t^{n}$$
$$\ge \tau \min_{n} \left(\hat{\mathbf{w}} \cdot \boldsymbol{\phi}^{n} t^{n} \right)$$

So $\hat{\mathbf{w}} \cdot \overline{\mathbf{w}}^{(\tau)}$ is bounded from below by a function that grows linearly in τ .

If the algorithm runs forever, $\hat{w}{\cdot}\bar{w}^{(\tau)}$ diverges.

Proof of the Theorem (3)

Find an upper bound on the growth rate of $\bar{\mathbf{w}}^{(\tau)}$.

$$\boldsymbol{\bar{w}}^{(\tau+1)} \qquad = \; \boldsymbol{\bar{w}}^{(\tau)} + \boldsymbol{\phi}^{n} \cdot \boldsymbol{t}^{n}$$

$$\begin{split} \|\bar{\mathbf{w}}^{(\tau+1)}\|^2 & = \|\bar{\mathbf{w}}^{(\tau)}\|^2 + \|\phi^n\|^2 (\tau^n)^2 + 2\,\bar{\mathbf{w}}^{(\tau)} \cdot \phi^n t^n \\ & \leq \|\bar{\mathbf{w}}^{(\tau)}\|^2 + \|\phi^n\|^2 (\tau^n)^2 \end{split}$$

because $\bar{w}^{(\tau)} \cdot \phi^n t^n < 0$ since ϕ^n was misclassified.

Note:
$$(t^n)^2 = 1$$
 since $t^n = \pm 1$

$$Let \|\phi\|_{max} = max \|\phi^n\|$$

Then
$$\|\bar{\mathbf{w}}^{((\tau)+1)}\|^2 - \|\bar{\mathbf{w}}^{(\tau)}\|^2 \le \|\phi\|_{\max}^2$$

Since $\|\bar{w}^{(0)}\| = 0$, after τ weight updates we have:

$$\|\bar{\mathbf{w}}^{(\tau)}\|^2 \leq \tau \|\phi\|_{\max}^2$$

21

Proof of the Theorem (4)

Show the bounds must cross.

$$\|\bar{\mathbf{w}}^{(\tau)}\|^2 \leq \tau \|\phi\|_{\max}^2$$

So $\|\bar{\mathbf{w}}^{(\tau)}\|$ grows no faster than $\sqrt{\tau}$

But $\vec{w} \cdot \vec{w}^{(\tau)}$ has a lower bound that is linear in τ :

$$\vec{\mathbf{w}} \cdot \vec{\mathbf{w}}^{(\tau)} \geq \tau \min_{\mathbf{n}} \left(\hat{\mathbf{w}} \cdot \boldsymbol{\phi}^{\mathbf{n}} \, \mathbf{t}^{\mathbf{n}} \right)$$

The bounds would eventually cross if τ got large enough. Hence, τ must bounded, meaning we achieve correct classification of all points in a finite number of steps.

QED.

22

More Than 2 Classes

 $\begin{array}{c} x_1 \\ x_2 \\ \hline \end{array} \begin{array}{c} >0 \\ \hline \end{array} \begin{array}{c} y_1 \\ \hline \end{array}$

Classes:

- 0 0
- 0 1
- 1 (
- 1 1

The two neurons learn independently.

23

Linear Units: Function Approximators Threshold Linear unit yLeast squares fit $y = \sum_{i} w_{i}x_{i}$

The LMS (Least Mean Squares) Learning Algorithm

Define total sum-squared error over the training set:

$$E = \frac{1}{2} \sum_{j} \left(d_{j} - y_{j} \right)^{2}$$

Do gradient descent in the error E:

$$\frac{\partial \mathbf{E}}{\partial \mathbf{y}} = \mathbf{y} - \mathbf{d}$$

$$\frac{\partial \, E}{\partial \, y} \; = \; y - d \qquad \qquad \frac{\partial \, y}{\partial \, w_i} \; = \; \frac{\partial}{\partial \, w_i} \sum_i \, w_i \, x_i \; = \; x_i$$

Chain rule:

$$\frac{\partial E}{\partial w_i} \, = \, (y\!-\!d) x_i$$

Gradient descent in E:

$$\Delta w_i = -\eta (y-d)x_i$$

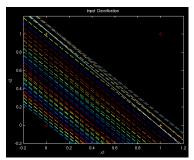
 η is a learning rate constant

LMS Convergence

If the learning rate η is small enough, LMS will always converge.

When |E(t+1)-E(t)|<0.001, stop.

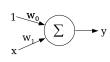
What about XOR?



Why LMS Can Blow Up

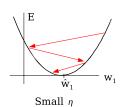
Error is quadratic in \vec{w} .

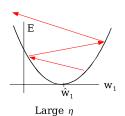
$$E = \frac{1}{2} \sum_{i} (d_i - y_i)^2$$



So the error surface forms a bowl.

The one-dimensional projection is a parabola.



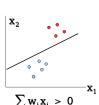


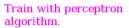
See bowl and parabolas demos.

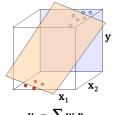
27

25

Classification vs. Mapping





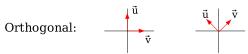


 $y = \sum w_i x_i$

Train with LMS.

There are some pathological cases where LMS won't classify all points correctly, but the perceptron algorithm will.

Orthogonality and Linear Independence



Linearly independent: $\sqrt{\vec{v}}$



LMS Works Best with **Orthogonal Input Patterns**

 $Patterns = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Desired = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$

Even if not orthogonal, LMS will find a perfect solution as long as the patterns are linearly independent.

If not linearly independent, patterns interfere with each other and total sum-squared error cannot reach 0.

30

The Rescorla-Wagner Model of **Animal Learning**

UCS = shock

UCR = jumps; tries to escape

 $CS_1 = light$

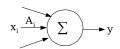
 $CS_2 = tone$

CR = fear response: freezing, shivering, inhibition of drinking

Rescorla-Wagner is a Linear Model

A_i = Associative strength between CS_i and UCS.

 $x_i = presence of CS_i$: [0,1]



 $Conditioned \ Response \ = \ y \ = \ \sum_i A_{_i} x_{_i}$

Conditioning Experiments

Simple conditioning:

Train: light --> UCS
Tests: light --> CR
tone --> nothing

Conditioned inhibition:

Train: light --> UCS

light + tone --> no UCS

Tests: light --> CR

light + tone --> no CR
"summation test"
"retardation test"

Rescorla-Wagner Learning Rule

The Rescorla-Wagner learning rule is the LMS rule, also called the Widrow-Hoff rule or the delta rule.

Problem: Rescorla-Wagner can't learn XOR.

But rats can.

Solution: Use a conjunctive unit as a third input.

(But this is a hack.)

34

33

15-496/782: Artificial Neural Networks

David S. Touretzky

Spring 2004