Linear Units, Percepj:rons, Linear Units and Perceptrons
and the LMS Algorithm
Perceptrons were the original “neural nets”.

Rosenblatt (1962)
Principles of Neural Dynamics
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Bernie Widrow:
weather prediction
adaptive equalization in modems

Peceptrons Are Linear Classifiers Decision Boundary Off the Origin?
K %‘ 1 ~
X /2' .. 0 ® < _— o oo, . ®
net=y w,x ° : . ~ o o X, Add a bias term W /’ g ° . ° e .
| .. . .. - Wt W, X, +W,X,>0 °. o '. ., e
y=[1 ifnet>0
[0 otherwise
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The Decision Boundary is Always
Perpendicular to the Weight Vector

Ww=-6, -1, 3]

slope of weightvector=w,/w,;=-3 X2

slope of decisionboundary=1/3 [W1 w2]
. ' -6-x,+3x, =
(If a line has slope m, the

perpendicular has slope -1/m.) .
/ 1

Scaling the weight vector has no
effect on the decision boundary!

Thresholds vs. Biases

w;
\ y:[l iwaixi>9
- [O otherwise

0
Learningrules adjustbothwand 8
Simpler solution: w, = —0
16
Wi
@ A bias term of —0 is equivalent to a threshold of 6

7
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Make the Weight Vector Touch the
Decision Boundary

LetWw=/-2,3,4]
i ; N LB
LetV=h
4 3 >4<
4
Wytw, v, +w,v, =0 —
wy+w h+w2h =0
b W0 _ 2 AN
Cwiiw? 25 4/25 25’25
6/25 @
- _|6 8 8/25
Vs [25' 25} =

Perceptron Learning Rule

Initialize W0

For each X;in training set:

net=%,-w
y:[l ifnet>0 class|1
|0 otherwise

I W ify=d, class 0
We W+, ify<d,
le—ii ify>d,

Repeat until all X, classified correctly.

David S. Touretzky Spring 2004



How to Run the Matlab Demos

> matlab
-~ cd /afs/cs/academic/class/15782-s04/matlab/perceptron
> 1s

~ perceptron

Some Problems Aren't
Linearly Separable

Convex classes aren't
linearly separable

XOR

Not in “general position”
11
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Learning Boolean Functions

XVy XAy,

Are all Boolean functions learnable?

Perceptrons Can't Compute XOR

@ ' ®

Perceptrons

© @
Minsky & Papert:

Perceptrons can't compute
“connectedness”.

Spring 2004
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Prove That Perceptrons Can't
Compute XOR

1

2 1w,

: 2z

5. w,<0 (by1) 7

6 -w,<w, (by3)

7 -w,<w, (by2) Wyt WX, +WyX, >
8 w,+w,<-w, (by4)

9 0<w, (add6,"

10. w,>0 (by9)

Lines 5 and 10 conflict

Vectors

2, 3
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y =

Let¢®
Lett"

If a problem is linearly separable,
all ¢*

Let's Use +1/-1 Outputs

_ [+1 ifnet>0

sgn(net) =
gn(net) |-1 otherwise

@ of 1% for
OF/I .B
= input pattern n S :,

= class of pattern n (-1 or +1) Sw

t" lie on the same side ¢ space

of the decision boundary.

Dot Product

David S. Touretzky

G-V = [|ul}v]l-cos®

i = [ul u, u3]

Vo= [v, v, v

UV = u,v,+u,v,+u,v,

If tiis a unit vector, then G-V is the length
of the projection of v along 1.

Spring 2004
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Easy vs. Hard Problems

Dyyux = maxD(W)
w

Large D,,, — easy problem.
D,.x<0 — not linearly separable.

-1

For AND, D =
max \/5

1
=—. ForXOR, D

Proof of the Theorem (1)

Assume a vector W exists that correctly classifies all points.
Thenw-(¢p"t*) > 0 for all n.

At each step of the algorithm:
w' " = weights at step T
¢" is the misclassified vector at the current step
W(T+l)(_v—v(‘r)+¢ntn
Suppose d)n has been misclassified T" times so far.
Total misclassifications T = Y. T
n

Therefore W™ = 3 1" ¢"t"
n

(assuming w° = 0)
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Perceptron ConvergenceTheorem
Rosenblatt (1962)

This theorem is very famous.

The version that follows is from Bishop (1995), based
on Hertz, Krogh, and Palmer (1991).

Theorem:

If a problem is linearly separable, then
a perceptron will learn it
in a finite number of steps.

Proof of the Theorem (2)

Find a lower bound on the growth rate of w-w'" .

ww'” = YW t?
n

>Tmin(v”v~¢nt“]
n

So w-w'" is bounded from below by
a function that grows linearly in T.

If the algorithm runs forever, w-w'" diverges.

David S. Touretzky Spring 2004
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Proof of the Theorem (3)

Find an upper bound on the growth rate of w'".

W(‘Prl) _ W(T>+¢n.tn

”W(‘Prl)”Z _ ||W(ﬂ||2+I|¢nl|2(‘('n)2+2w(ﬂ'¢ntn
< 1w TR+ P ()

because W' ™-¢"t* < 0 since ¢"wasmisclassified.
Note: (t*)? = 1 since t* = =1

Let||¢llne = max||¢”
n

Then [w' ™| W' </l lffx

Since |w'%|| = 0, after T weight updates we have:

— (T,
9 I < rllghl e

More Than 2 Classes

15-496/782:

The two neurons learn
independently.

Artificial Neural Networks
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Proof of the Theorem (4)

Show the bounds must cross.

971 < Tleb e

So |[w'™|| grows no faster than T

But W-w'" has a lower bound that is linear in T:

w-w'" > Tmin(W-¢"t?
n

The bounds would eventually cross if T got large enough.
Hence, T must bounded, meaning we achieve correct
classification of all points in a finite number of steps.

QED.
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Linear Units:
Function Approximators

—

Threshold Linear
unit unit

1%‘
y Least \ @—> y
squares x/
fit

24
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The LMS (Least Mean Squares)
Learning Algorithm

Define total sum-squared error over the training set:

1< 2
E=>-2(d;-y))
J

Do gradient descent in the error E:

@ = v—-d (’}_y = (’}_Zwixi =X
oy ow; ow; .
Chain rule:
oE
9 = (yv=d)x.
ow, (y-d)x;

Gradient descent in E:
Aw; = —n(y—-d)x, n is a learning rate constant

25

Why LMS Can Blow Up

Error is quadratic in w. 1—W,
1 2 7@—>y

E = 52(d-y) —

So the error surface forms a bowl.
The one-dimensional projection is a parabola.

See bowl and
parabolas
demos.

Small n

27
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LMS Convergence

If the learning rate nis small enough, LMS will always converge.
When [E(t+1)-E(t)|<0.001, stop.

What about XOR?

Classification vs. Mapping

@ x2
X
y = Z W, X;
Train with LMS.

>wx, >0

Train with perceptron
algorithm.

There are some pathological cases where
LMS won't classify all points correctly, but
the perceptron algorithm will.

David S. Touretzky Spring 2004
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Orthogonality and Linear
Independence

* ;
Orthogonal: A

Not linearly M V/’v

independent:

29

The Rescorla-Wagner Model of
Animal Learning

UCS = shock

UCR = jumps; tries to escape H
*
2 -—-‘-‘-2 < i
CS, = light ; '

CR = fear response: freezing, shivering,

inhibition of drinking

31
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LMS Works Best with
Orthogonal Input Patterns

2

10
01

(0]
3
-4/7

Even if not orthogonal, LMS will find a
perfect solution as long as the patterns are
linearly independent.

Patterns =[ } Desired =

If not linearly independent, patterns
interfere with each other and total
sum-squared error cannot reach 0.
30

Rescorla-Wagner is a Linear Model

A, = Associative strength between CS; and UCS.

x; = presence of CS;: [0,1]

X, y
/

Conditioned Response = y = Y Ax,
i

32
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Conditioning Experiments

Simple conditioning:

Train: light --> UCS
Tests: light --> CR
tone --> nothing

Conditioned inhibition:

Train: light --> UCS
light + tone --> no UCS
Tests: light --> CR
light + tone --> no CR
“summation test”
“retardation test”
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Rescorla-Wagner Learning Rule

The Rescorla-Wagner learning rule is the LMS rule,
also called the Widrow-Hoff rule or the delta rule.

Problem: Rescorla-Wagner can't learn XOR.
But rats can.

Solution: Use a conjunctive unit as a third input.
(But this is a hack.)

34
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