Pattern Recognition 2:
Probability Density Estimation
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Reading: Bishop, sections 2.1 - 2.5

Approaches to Density Estimation

@

- No assumptions about distribution. Use the training set
directly to estimate density and classify points.

e Parametric Models X2

- Assume a distribution defined by
some small number of parameters.
- Gaussian distribution: po
X1
* Non-parametric Models

- k-Nearest Neighbor classifiers
* Semi-parametric Models

- Create prototypes, or train feature detectors that are very
general functions. Don't retain the training set.

- Neural nets are semi-parametric models.
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Pattern Classification Again

The goal: classify input pattern x by assigning it to
the most probable class C,.

In order to do this, we need to measure p, (x), the

probability density of each class in the vicinity of the
input pattern.

How do we estimate these probability densities?

Parametric Model:
Gaussian Probability Density

2

1
p(x) = exp

V2mo?

—(x—u)
20°

Function NORMPDF(x,mu,sigma) from Matlab
statistics toolbox: S—

mu = 0.4; sigma = 0.3;
dx =0.05; x=-2:dx: 2;

plot(x, normpdf(x,mu,sigma))

normpdf(0.35,mu,sigma) = 1.31 Why is this > 1 ?
Integrate the pdf over [-2,2]:

sum(normpdf(x,mu,sigma)*dx) = 1.0
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2D Gaussian Distribution Mahalanobis Distance

Distance from the peak of the probability distribution.

This is the argument to the exp function on the previous page.
p(x) exp

—%(X—u)TZ’l(X—u)

1
2 X 1/2
=l A% = (x—p) =7 (x—p)

u is a mean vector (u, u,)
3 is a 2x2 covariance matrix

Rescale the distance along each dimension based on covariance X.
|3 is the determinant of X

So lines of constant probability are ellipsoids of constant A?

p(x) is governed by y and % If all gaussians have the same X, decision boundaries are linear.

u = E[x]
5 = Elx—p)(x—p)"]

X
Eigenvectors of 3 are the principal axes of the ellipse.

yi(x) = y,(x)

5 parameters total: 2 for y and 3 for X
(because X is symmetric)

Simplifications Simplifications

1) Assume no interaction between dimensions. Then

2) Assume no interaction, and equal variance ¢
the covariance matrix is diagonal.

along all dimensions.

a2 0 0 > 0 0
2

_oggo Z:0002

0 0 o .. 0 0 ¢

Ellipse is aligned with the coordinate axes: The distribution is circular (or a hypersphere.)
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Finding Optimal Parameters 6
by Maximum Likelihood

p(Xlo) = 1:[1p(x“|9> = L(0)

Find the 6 that maximizes the likelihood L(9)
More convenient to minimize negative log likelihood:

N
E = -InL(0) = Y. Inp(x"}6)
n=1
Differentiate E to find optimum 6. For a Gaussian:

(x =) ("= "

z|=
M=

N
IQ:I_ZXH S =

N =
n=1 n=1

Bayesian Inference

p(x|X) = [p(x,6/X) de

p(x,01X) = p(x|g, X)p(0|X)
Independent of X

p(x|X) = [p(x[o)p(6]X) d6

Performs a weighted average over possible values for 6.
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Finding Optimal Parameters by
Bayesian Inference

Instead of trying to find a single best value for 6,
consider the distribution over possible values.

Assume a prior p(0), in the absence of data.

Then adjust the distribution after seeing the data,
giving a posterior p(6 | X).

Bayesian Inference
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Bayesian Inference Example

Learning a normal distribution.
The prior on p has zero as the most likely value.
The distribution shifts and tightens as N increases.

Non-Parametric Methods

What if the data doesn't fit a Gaussian distribution?
What if it doesn't fit any tractable distribution?

Instead of fitting distribution parameters, we can
estimate probability density directly from the
training data.

This is the non-parametric approach.
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Sequential Parameter Estimation:
On-Line Learning

Useful for “adaptive systems” that tune their
parameters with experience.

Requires only a little storage.

Example: learning the mean of a Gaussian:

1

N A N+l
Hyyp = Hy T+ —N+1(X -

x|

Density Estimation Within Region R

P = [p(x) dx'

Assume N points drawn independently from p(x).
The probability that K of them fall within R is:

N!

K!(N—K)!'PK“_P)H

Pr(K) =

mean:E[K/N| = P
var:E[(K/N-P)*] = P(1-P)/N

Variance drops, distribution sharply peaked as N—w

David S. Touretzky
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Density Estimation Within Region R

P ~ K/N

If p(x) doesn't vary much over R, we can estimate

where V is the volume of R, and xis any point in R. So

K

PX) ~ T - o

R should be large so we get a good sample.
R should be small so we don't over-smooth the estimate.
There is a tradeoff in the choice of R.

Parzen Windows w/Gaussian Kernels

Kernels must satisfy H(u) > 0 and fH(u)du =1

We can use a Gaussian kernel in place of a boolean hypercube.

13 [ lx—x" |

= = exp | t
NZ:; 2n h2 w2 p[ 2h* | o —
Varying h changes the amount M

of smoothing of the estimate.

© h=001
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Kernel functionH(u)=

Fixed R: Kernel-Based Methods
(Parzen Windows)

1 iffuyl<1/2
0 otherwise

H(u) is a unit hypercube centered at the origin. °

H

Density estimate p(x) = lz Lh
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X

—X

n

h is a hypercube w/side h, volume h?, centered on x.

Variable Size Region R

Parzen windows use a fixed kernel size; the number
of points falling within the window will vary.

Alternatively, we can choose a fixed number of
points k, and scale the window until it's just big
enough to admit k points.

This is called k-Nearest Neighbors.
. k=5 ) @ *
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Deriving k-Nearest Neighbor

K
p(x|Cy,) = K Class-conditional density

N,V
(x) = K Unconditional densit
p NV y
N
P(C,) = Wk Priors
P(C[x) = p(x|C)P(C,) _ &

p(x) K

So, to classify x with minimum error, let the
neighbors vote and follow the majority.

21

Semi-Parametric Approaches

Histograms: define a set of bins of fixed size.
Use the histogram to approximate the density.

Brittle: bin edges are arbitrary

@ M=3

(© M=22
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High Dimensions Are Strange

Let S"= unit hypersphere in n dimensions.
Let C"= unit cube (sides of length 2) in n dims.

2
Volume(Sz) _ T . 0785
Volume(C?) 4
Theorem (Bishop excercise 1.4):
mVolume(S“) 0

n-» Volume (C")

Also, in an n-dim. Gaussian distribution, most of the

probability mass is in a thin shell at large radius: a hollow sphere.

Almost no points are at the origin (mean value).
Not what you'd expect from the 1-dimensional case.

Kohonen's LVQ
(Learning Vector Quantizer)
Nearest-neighbor classifier (k=1), but uses a small

number of prototypes instead of storing all the
training data. Neural net learns the prototypes.

Let € be an input pattern.

Winner i° = argmax|w,-g|
max|

Move winner's weight vector closer to (further from)
¢ if winner was correct (incorrect).

AW. = {+’7(§_Wf) if correct
i l—n(E—W.{) if incorrect
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Example Application: Chinese OCR 405-Dimensional Feature Set

Name Dimensions
“Simplified” character set has 7000 symbols. Blacknezz (mumber of black pixek:) L First and
Stroke With 1 second
Total 5tioke Length 1 order
Horizontal Projection 64 eripheral
Four main fonts are used: Fangsongti, Heiti, Kaiti, wpm@i‘,n 6 ?eatﬁres
and Songti. Numberof Horizontal Tramitioms (white-to-black) 1
Number of Vertical Trareitiore (white-to-black) L
First Creer Peripheral Features 2
13 S #* Second Ourler Peripheral Featums 2 | ounts:
3;'-3 ﬁj ,T_g; # Stroke Density at ©° and 0@ 16 Ee C/ ;5
f%' 1% *@.‘ *)'-‘l:‘:_’_ Local Direction Contributivity with four regions and four diwctions 64 | ;3
i h Maximum Local Dirsction Contributivity &4 : 26
7]‘??: 1% )]:7?\ 1:% Stroke Proportion 3 Stroke
Black Jump Distribution in Balanced Subvectors k2 Proportion
Total Feature Dimension s 405
’s Features from Suchenwirth et al. (1989) 2
405-Dimensional Feature Set Training Strategy
£ 0 degree transform| Romero, Berger, Thibadeau, and Touretzky (1995):
; 1) Collect 20,000 characters of training data.
e ———— 2) Calculate 405 feature values for each character.
T, N . 3) Extract the top 100 principal components.
45 degree transform)
/ 4) K-L transform to minimize within-class variance
and maximize inter-class variance.
— 5) Train neural net classifier using a variant of the
LVQ algorithm.
Local Direction Black Jump Distribution in
Contributivity Balanced Subvectors
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Transforming the Feature Space

Original Classes Original Classes Original Classes
0.5 2
- © ®
< » - c
BEX R g
B 2 2
fos m £o )
a a a
-1 -1 B
-1 0 1 -1 0 1 -1 0
Dimension 1 Dimension 1 Dimension 2
Transformed Classes Transformed Classes Transformed Classes
5 5
™~ ™ = «©
s 3 c
iikm 1% @
g -5 - 25 . g st °
a a
= -10
-10 0 10 -10 0 10 -10 0 10
Dimension 1 Dimension 1

Dimension 2
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Results

Started with 6992 prototypes.

The system added 40 prototypes during training.
Tested on 40,000 scanned characters.

97.611% correct recognition rate on test set.
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