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Telling A's from B's Feature-Based Pattern Recognition
T R 2 é A “feature” is some quantity computed from the raw
o H o = ¢ input values describing the instance.
E % é : g Goal: learn the most likely class for each combination
. i % of feature values.
* Single features, such as the How should A f
character aspect ratio be classified?
C,orC,? Use only a small number of features?

(height/width), may not be
adequate to accurately
discriminate classes.

Cheap and fast to implement.

Small parameter space: easy to train.
* Using two features can give But accuracy may be poor: can't discriminate well.
better accuracy. (Still not perfect.)
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How Many Features to Use?

Lots of features?
In theory, should discriminate well.
But expensive to implement (slow).

“Curse of dimensionality”: need lots of training
examples to cover the feature space.

Choose a few maximally informative features:
Best strategy.
But it may be hard to find good features.

Pre-processing the input data can help.

Classification Functions

*Explicitly assigning a class to each point in the feature
space is too expensive.

eInstead, write a classification function to do it!
f:X" - C

*What should this function look like?

- Could be linear (a perceptron)
- Higher order polynomial

- Something else (e.g., a neural network)
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The Curse of Dimensionality

. . . x;, A
*Assume d dimensions, with

M values per dimension. [ =1

L
*Label each bin with its class. x ‘,E_Tﬂclrl—Uﬁ

Xy

*Total number of bins = M%.
*Growth is exponential in d: bad news.

*Can't be used for high-dimensional problems, like
Chinese OCR (100 dimensional feature space.)

*Too many bins --> not enough training data.

*Can't learn (or even write down) a separate class for
every possible combination of features.

Classification via Regression

*Classifiers map points in feature space X" to discrete
classes C;.

*Regression is a function approximation technique.
g pp q

*Suppose we want to approximate F(x) by a function f
(x;w), where w is a vector of parameters.

*Regression problem: find w* that minimizes the error
of f(x;w*) as an estimator of F(x).

*The LMS learning rule uses sum-squared error; it does
linear regression.

*The perceptron rule does not do regression, but it
does search weight space to train a linear classifier.
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Linear Regression

y = 0.5 + 0.4sin(2wx) + n where neN(0,0.05)

LMS fits a line (or plane, or hyperplane) to a dataset.
The fit here is poor.

Why not fit a higher order polynomial?

Generalization: Use a Test Set
to Measure the RMS Error

Independent of the
number of test set

T
Z KY(Xi;w)_tiIZ .
iz1 points T.

M=3 (cubic poly) gives reasonably
low error on both training and test sets.

¥ M=10 hits all 11 training points spot-on.
o \ But performance on the test set is poor.
< Why? Overfitting: we're fitting the noise.
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Higher-Order Polynomials (Order M)

M

" )

V(X) =W+ W, X+ +WyX = Z w;x’
j=0

Minimize sum-squared error over N training points x;:

1 N 2
E =5 X [y(sw)-t
i=1
,f'n =23 ‘ M=3: cubic polynomial provides
os : , areasonably good fit.
W= (W W, W, W)
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Optimal Model

o
w

A N = = = test
training
\ 9
\

Test set performance is best
\ for M=3 (cubic poly).

(I 1

RMS error

o
5

4 6 10
order of polynomial
Higher order polynomials fit the training data better.

But performance on the test set can get worse, if the
model is overfitting.

Generalization is usually what we care about.

12
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Using Regression to
Train a Binary Classifier

Let F(x) € C=[0, 1.

Find w that makes f(x;w) the best estimator of F(x).

Turn an estimator into a classifier: map f(x;w) into C.

For binary classification problems, we can use a
threshold function to do this.

Regression: y = f(x;w)

Classification: y—f(x;w) > 0

Regularization Smooths Polynomials
by Penalizing “Bendiness”

E=E +vQ
o = 1_f dzy de
2J \dx?

Constant v determined empirically.
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Training a Classifier

Linear classifier Quadratic
makes a lot of classifier does
errors. pretty good job.

Higher-order
polynomial gets
all points right.

But...?

Quadratic Classifiers

Quadratic in n variables:

n n n
y = wy + Zwixi + Z Zwixixj

i=1

i=1j<i

Still a linear model: it's a linear function of the weights.

Think of the quadratic terms as just extra features,
with weights wy;.
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Building a Quadratic Classifier Quadratic Regression Function

. Decision
Assume 2D input space: x,; and x, Surface
y:wl+w2x1+w3x2+w4xf+w5x§+w6x1x2
Decision boundary: y > 0

Training: LMS, or perceptron.

Shape of decision surface?
parabola, hyperbola, ellipse

What's Better Than a
Polynomial Classifier?

Plotting the Decision Boundary

+ t Multilayer perceptrons!
*2 %. ‘e N W, + WX, +WiX, + W Xo+WXa+WeX X, = 0
+\. L] o,
o ‘_,tl i I drati l Polynomial classifier of order k<d with d-dimensional
const. lnear quadratic input needs how many terms?
X1 K .
Fl—l this is exponential in k
WoXo + (WatWeX,)X, + (W, +W,X,+W,x;) = 0 i—0 M
L | | |
a b ¢ Neural nets (MLPs) can do the job with far fewer
ax’ + bx, + ¢ = 0 parameters.
But there's a price to pay: nonlinearity, local minima ...
— A 2_
X, = w Note: up to 2 real roots.
19 20
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Why MLPs Are Better

Output
Unit Barron (1993): sum-squared
error decreases as O(1/M),
Hidden where M = # of nonlinear
Units hidden units.
This is true independent of
Input the number of inputs!
Units

For polynomial approximators, error falls as O(1/M2/d),
where d is the dimensionality of the input. (Assumes
linear combination of fixed polynomial terms.)

For large d, neural nets win big!

21

Bayes Theorem

P(C.X)) = P(CX) - P(X)
P(X||Cy) - P(Cy)

Bayes Theorem:

P(C[X)) =

This will be on the midterm.

23
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Crl | |8rSelte | o Basics of
C2 ° ° .... ® 9% o PI‘Obablllty

Classes: C, and C,
Feature values: X = (X, -+, X,)

Prior probability: P(C,)
Joint probability: P(C., X))
Conditional probability: P(X|C,)
Posterior probability: P(CX))
Normalization const. P(X))

Why Use Bayes Rule?

e Tumor detection task:

- 99% of samples are normal
- 1% abonormal

* Training set: 50% normal, 50% abnormal

e Use training set to estimate P(X;|Cy)

« Class priors: P(Cy) = 0.99, P(C,) = 0.01

* Bayes' rule gives the correct posterior probability:

P(X)|IC,) - P(C,)

P(Ck|Xl) = P(Xl)
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Sample Problem

1) One third of Americans believe Elvis is alive.
2) Seven eights of these believers drive domestic cars.

3) Three fourths of all the cars in the US today were
manufactured domestically.

4) The highway patrol stops a foreign-made car.

What is the probability that the driver believes
Elvis to be dead?

Bayesian Classifiers
Put x in class C, if P(Cy[x) > P(C[x) for all j#k

Equivalently, by Bayes' Rule,
P(x|C,)-P(C,) > P(x|C;)-P(C) for j#k

Why is this the right thing to do?

Consider a two-class problem:
- Class C; has decision region R

- Class C, has decision region R,

What is the probability of misclassifiying x?
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Foreign
Car
1/4

Domestic
Car
3/4

Elvis alive: 1/3 |2 2 = o7
Elvis dead: 2/3 %

P(foreign,dead)

P(foreign/dead) =
5

5 11
+
24

24 24

P(foreign, dead)+P(domestic, dead)

5

1

P(foreign|dead) - P(dead)

P(dead |foreign)

| o

L2
3

-
o)}

- =32
6

=

P(foreign)

Likelihood of Misclassification

P(error) = P(xeR,C,) + P(xeR,C,)

So if p(x|C,)-P(C,) > p(x|C,)-P(C,),
we can reduce the error contribution
by putting x in R, rather than R,
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[ pxic,p(cyaxs [ pixic,)p(c,ax
R2

P(x€R,|C,)-P(C,) + P(x€R,|C,)-P(C,)

R, .
Opimal

P(xIC)P(C,)

Decision
Boundary
p(xIC))P(C))
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Good News

A properly trained neural network
will approximate
the Bayesian posterior probabilities

P(Ck | x)

29
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Discriminant Functions

Define y,(x) ~ P(C,|x) (discriminant function)

Could train a separate function approximator for each
function y,

Special trick for two-class problems: define
y(x) = yi(x) = y,(x)
Assign x to C, if y(x)>0.

One function discriminates two classes.
30
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