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(Based on lecture notes by Rich Caruana.)

Linear Model:
High Bias, Low Variance

High bias: “the world is linear”.

Low variance: insensitive to slight changes in
the training data.
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Bias vs. Variance

* Bias: inability to match the training data.

- The learner can only represent a certain class of
functions: n-th order polynomials, sigmoid curves, etc.

- The best it can do is pick the closest match to the data
from within that class, e.g., fit a sine wave with a poly.

- High bias = strong a priori constraints on the learner.

* Variance: how sensitive is the model to the choice
of training set?

¢ All learners exhibit a bias-variance tradeoff.

Overly Complex Model:
Low Bias, High Variance

Low bias: can fit anything.

High variance: very sensitive to training data.
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Example of a
Good Bias-Variance Tradeoff

Moderate bias: elliptical arcs more complex than lines.

Low variance: not overly sensitive to training data.

Polynomial Fitting a Sine Wave

y = sin(x)+v
10th order polynomial
moderately good fit

Approximation
% Training Data %
o Target Function without Noise  -eeeemeees -

0 10 20

X
Train on points x€(0,...,20].  Test on points x€[0,20].
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Generalization Performance

Generalization: how “correct” is the network's
behavior on novel inputs?

Can we predict generalization performance?

Low training set error is no guarantee of good
generalization, due to overfitting (fitting noise.)

Example: train a polynomial approximator on data from:

y = sin(x/3)+v x€(0,...,20]
v is random noise in [—0.25,+0.25]

A 20" order poly will fit the training points exactly.
But what order gives the best generalization?

Polynomial Fitting a Sine Wave

y = sin(x)+v
20th order polynomial
severe overfitting
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David S. Touretzky Spring 2004



Training a Neural Net on
y =sin(x/3) + v

Train on same 21 integer data points: {0, ..., 20}
100,000 stochastic updates
Learning rate reduced linearly from 0.5 down to zero.

Try different numbers of hidden units...

Neural Net Fitting a Sine Wave

y = sin(x)+v
2 hidden units: 7 parameters
respectable fit

Approximation

« Training Data x
... % Target Function without Noise e
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Neural Net Fitting a Sine Wave

y = sin(x)+v
1 hidden unit: 4 parameters
poor fit

Approximation

» Training Data =
oo Target Function without Noise e
e

0 10 20
10

Neural Net Fitting a Sine Wave

y = sin(x)+v
10 hidden units: 31 parameters
moderately good fit

Approximation
= Training Data x

1+ « Target Function without Noise -e--mmen 1

0 10 20
X
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Spring 2004



Neural Net Fitting a Sine Wave

y = sin(x)+v
50 hidden units: 151 parameters
still moderately good fit

Approximation
w Training Data =
w  Target Function without Noise - |

0 10 20

What Causes Overfitting?

* Too many free parameters?

- High VC dimension: models are too complex:
- Too many terms in the polynomial?
- Too many weights in the neural net? No!

* Not enough training data to smooth things out?

- Overfitting cannot occur with infinite training data.

* Training for too long?

* Something else? 15
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Neural Nets Don't Overfit?

* This is a myth.
* Even small nets can overfit in some situations.

* But big nets, with many parameters, may not
overfit significantly more than small nets.
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Error Measures

Sum-squared error (SSE) is most commonly used.
E=Y[dP-yf
P
Cross-entropy is also popular:
E = - |d"logy"+(1-d®)log(1-y")]

P

Cross-entropy strongly penalizes outputs that are far

from their targets.

Log term diverges if y?*=0 and dP’=1 or vice versa.

Some binary decision problems not learnable using
SSE can be learned using cross-entropy.

Onset of overfitting depends on the error measure. 16
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Measuring Overfitting Overfitting Can Vary by Region

Jo=f I | T y = [ —cos(x)+v o<sx<m
Ii yam (o=t Lcos(S(x—rr))Jrv T<X<2Tm
™[l Cross-entropy , =t SSE E . Absolute
I (| sare - \ Error
sup | / B | P | \ Function gets more curvy for x > .
ot ANy | Generate 5 equally spaced points in the smooth region,
_ - _a : - and 15 points in the curvy region.

Error rises for Train polynomial models of varying order.

misclassified points as Measurements by A. Weigend

network's outputs on a six-way phoneme . . o
become more certain. classification task. Good fit on curvy region but overfitting on smooth one.
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10™ Order Polynomial
2 Order 10 Approximation
s Target Function withoutNesse -~ — |
| T
0.5
0
-0.5 .
g ’ starting
to
L5 overfit
s S I B m—

Training A Neural Net
On the Same Data

Trained MLP on same 20 point dataset.

20,000 batch updates (not stochastic).

Learning rate decreased linearly from 0.5 to zero.
Small nets underfit.

Large nets fit both regions well, even with 100

hiddens.
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16™ Order Polynomial

severe % #Good fit
overfitfting in this
here region
1 é 3 ;

1 Hidden Unit

Spring 2004

22

24



Test NMSE

10 Hidden Units
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BP Does Better than CG

Conjugate gradient gives lower error on training set
but produces significant overfitting compared to BP.
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100 Hidden Units

s |
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Measuring Generalization
Performance in a Neural Network

* Split the data into a training set and a separate
“validation set”.

* Error on the training set goes down monotonically
as training progresses.

* But error on the validation set will go down and
then back up: overfitting.

* A good bias/variance tradeoff produces good
performance on the validation set.

- So how do we find this tradeoff?
28
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“Early Stopping”
e Halt training when error on validation set rises.

* Problems:
- Final net not trained on all the data, since we held some
back to form the validation set.

- Early stopping point is based on just a small sample.

- Measure is biased: to accurately predict generalization,
we should measure performance on a separate “test set”,
distinct from the validation set, after early stopping.

29

Cross-Validation Procedure

1) Partition the dataset into M sections.

2) For each section, train a separate network using the
M-1 other sections as training data. Measure
performance on the section that was left out.

3) Estimate generalization as the average peformance
of the M networks on their respective validation sets.

Leave-one-out method: most extreme case of
cross-validation. Choose M = training set size.

31
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Cross-Validation

* Goal: predict generalization performance as a
function of some parameter, e.g.:

- Number of hidden units.
- Training time.

- Amount of noise added to training set.

30

Practical Early Stopping
* Use 5-fold cross-validation (M=5).
* Train each network on 80% of the data.
 Early stopping based on perf. on remaining 20%.

* Note: each network may be trained for a different
number of epochs.

* Final model is the averaged output of all 5 networks.

32
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Study of Network Generalization

Looked at generalization performance on 7 problems:
- NETtalk
-7 and 12 bit parity (nasty problems)
- Inverse kinematics for four-joint arm
- Robot modeling (Basel) and robot sonar (Base 2)
- ALVINN
Problems differed in a number of key dimensions:
- Binary vs. continuous inputs/outputs
- Large vs. small input space
- Presence/absence of noise

33

Test Problems

NETtalk

- Words randomly selected from corpus.

- Boolean inputs and outputs: 0 = 0.1; 1 = 0.9

- 250 words (1800 patterns) in each of train, test sets
- Update every 10 patterns

7 bit parity
- 64 patterns in training set; 64 in test set
- Boolean inputs and outputs
- Update on every pattern

35
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Generalization Study (cont.)

Used small training sets: 100-1000 points.
Varied hidden units from 2 to 800.

All nets trained with stochastic updates, learning rate
0.1, momentum 0.9, early stopping.

Plotted generalization as a function of training epochs.

Test Problems

Inverse kinematics for a robot manipulator
- Map goal (x,y,z,0) to four joint angles.
- No excess degrees of freedom (unique solution).
- Four continuous inputs; four continuous outputs.
- Linear in most regions; very nonliear in some.
- Code based on a real arm.
- Update on every pattern.
- Runs with 25, 250, 2500 patterns in training set.
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Base

Base

Test Problems

1 (robotic platform):

- Map (distance, angle, action) to (distance, angle)
- Three continuous inputs, two continuous outputs.
- Real world data; multiple sources of noise.

- 486 training patterns; 156 test patterns

2 (robotic sonar)

- Map (sonar sweep, base action) to new sonar sweep
- 32 continuous inputs, 31 continuous outputs
- Update every epoch.

- 118 training patterns; 118 test patterns.
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Generalization Curves

NETtalk
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Test Problems

Simulated ALVINN

- Learn steering direction for simulated road images.

- 960 boolean inputs, 50 continuous outputs.
- Distributed gaussian output representation.
- Update every epoch.

- 100 training patterns; 100 test patterns.

Generalization Curves

Inverse Kinematics
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Error

Cross-Validation RMS

Generalization Curves

Base 1: Average of 10 Runs
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Results

* Large nets perform very well.

* Only 3 of the 7 problems showed any drop in
performance for large nets.

* The drop was very slight.

* NETtalk showed dramatic overfitting for small nets,
not for large nets.

* Results show that early stopping is needed even for
small nets.
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Generalization Curves

Base 2: Average of 10 Runs

0.21 Y 2 hidden units <%—
0.2 \ 8 hidden units —+-- |
) i, 32 hidden units &--
0.19 H 128 hidden units -X— -
0.18 u} 512 hidden units =2 |

0.
0.
0.
0.
0.
0.12 ' ' '
0 200000 400000 600000 800000

Pattern Presentations “

Why Excess Capacity is Okay

* Network is initialized with all weights small.
* This limits its representational capacity.

* Nets with large weights have more representational
power: can represent more complex functions.

* But weights can grow only after many updates.

* So hypotheses with small weights are considered
before those with large weights.

* Simple hypotheses are explored first!

44
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Comparing Small vs. Large Nets

Train small nets with 2-400 hiddens using early
stopping to get the best network of each size.

Compare i/o behavior of large net (800 hiddens)
against optimally trained smaller nets:

- Compute SSE of large net's output vs. small net.
- Small values imply the nets are computing similar things.

Minimum SSE between large net and smaller nets was
200-400.

By comparison, SSE on training set was around 1600.

So the small and large models are performing similarly.

45

What Do Large Nets Learn?

Large net's performance was initially closest to the net
with 10 hidden units.

Then 25 hiddens, then 50, etc.

Large net learns a sequence of models corresponding
to each of the smaller nets in turn.

If early stopping is used, large net learns a model that
is similar to the best model that could be learned by a
smaller net.

47
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Sum of Squared Differences

Comparing Small vs. Large (cont.)
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Hidden Unit Variance, Covariance

_ l (p)
(x;) = sz:xi
_ 1 (p)_ 2
VAR, = gy X0
STD, = VAR,
1 ) )
COV,;= m;(x;m—<xi>)(x[jp)—<){j>)
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When Do the Hidden Units Learn? What Do Hidden Units Learn?

0s

Weigend analyzed hidden unit Units developed into binary-valued feature detectors:
learning trajectories on a

phoneme classification task.

160 inputs, 15 hiddens units,
6 outputs. Cross-entropy
error measure.

foal

Outputs move
toward O or 1:
variance rises.

Plot standard deviation of
hidden unit activity over the
training set as learning

progresses.

Result: all the hidden units I SR T TR

“wake up” at about the same \;Smau weights: outputs

time. stay near 0.5, so low var. |, Histogram of hidden unit activation values.

“Effective Number” of Hidden Units Conclusions
Looked at covariance matrix of  ..r ] * Backprop nets' inductive bias favors models with
hidden unit activation patterns. i . smooth solutions.
[ *p
How many eigenvectors does wr g
nd pC

* Backprop nets with excess capacity explore simpler,
smoother models first.

the matrix have at each time
point?

o
©
T

Estimates the “effective”
number of hidden units; the
rest are doing redundant things.

* Overfitting is possible in MLPs of all sizes.

prncipol components

* Conjugate gradient learning is more prone to
overfitting than backprop.

Plot sqrts of the eigenvalues.

Result: the network is
extracting the principal
components sequentially!
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Conclusions

* Early stopping can prevent overfitting and allow a net
to take advantage of excess capacity.

* Backprop uses excess capacity to fit more closely in
regions of high nonlinearity without overfitting in the
linear regions.

* It doesn't pay to try to keep your networks small.
Use the largest network you can afford to train.

53
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Conclusions

* Weigend: all hidden units “wake up” at the same time.
¢ Initially they all do the same thing.

* Hidden units differentiate over time: the number of
“effective” hidden units gradually increases.

* The principal components are learned in sequence.

* Backprop nets progress through a series of models
with increasing numbers of effective hidden units.

So early stopping favors simple models.
54
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