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What is Parameter Optimization?

A fancy name for training: the selection of parameter values, which

are optimal in some desired sense (eg. minimize an objective func-

tion you choose over a dataset you choose). The parameters are

the weights and biases of the network.

In this lecture, we will not address learning of network structure. We

assume a fixed number of layers and a fixed number of hidden units.

In neural networks, training is typically iterative and time-consuming.

It is in our interests to reduce the training time as much as possible.
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Lecture Outline

In detail:

1. Gradient Descent (& some extensions)

2. Line Search

3. Conjugate Gradient Search

In passing:

4. Newton’s method

5. Quasi-Newton methods

We will not cover Model Trust Region methods (Scaled Conjugate

Gradients, Levenberg-Marquart).
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Linear Optimization

Applicable to networks with exclusively linear units (and therefore

can be reduced to single layer networks).

In one step:
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This is linear regression. A good idea to always try first – maybe

you don’t need non-linearities.
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Non-linear Optimization

Given a fixed neural network architecture with non-linearities, we

seek iterative algorithms which implement a search in parameter

space:

w(τ+1) = w(τ) + ∆w(τ)

w ∈ <W

At each timestep τ , ∆w(τ) is chosen to reduce an objective (error)

function E({x, t};w). For example, for a network with K linear

output units, the appropriate choice is the sum-of-squares error:

E =
1

2

N∑

n=1

K∑

k=1

[

yk(x
n;w) − tnk

]2

where N is the number of patterns.
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The Parameter Space
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Want to think of (and operate on) weight matrices as a single vector:

w = mapping (W1,W2)

∈ <W , W = J (I + 1) + K (J + 1)

Doesn’t matter what mapping is, as long as we can reverse it when

necessary.

6



Approximating Error Surface Behaviour

Holding the dataset {x, t} fixed, consider a second order Taylor series

expansion of E(w) about a point w0:

E(w) = E(w0) + (w − w0)
Tb +

1

2
(w − w0)

TH(w − w0) (1)

where b is the gradient of E|w0 and H is the Hessian of E|w0:

b ≡ ∇E|w0

=
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In a similar way, we can define a first order approximation to the

gradient:

∇E|w = b + H (w − w0) (2)
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Near a Minimum

How does the error surface behave near a minimum w∗?

The gradient b ≡ ∇E|w0 → 0, so the shape of the error surface

is uniquely determined (to second order) by the Hessian:

E(w) = E(w∗) +
1

2
(w − w∗)TH(w − w∗)

H =

[

1 0
0 1

]

H =

[

1 0
0 2

]

H =

[

2 1
1 3

]
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General Algorithm Structure

STEP 1. τ = 0. Initialize w(0). Covered in §7.4.

while (TRUE) {

STEP 2. Compute ∆w(τ).

Update w(τ+1) = w(τ) + ∆w(τ).

Update τ = τ + 1.

STEP 3. If termination reached (covered in next lecture),

exit and return w∗ = w(τ).

}
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Gradient Descent Search

∆w(τ) = η · −∇E|
w(τ)

︸ ︷︷ ︸

(search) direction

(3)

As we’ve seen, the step size η is not a function of w(τ) and is known

in as the learning rate. In the most basic form of Gradient Descent

Search, it’s just a constant, and you have to set it by hand.

At each timestep τ , ∆w is a function of the current true gradient

only. The search history is ignored. As we will see, later algorithms

will exploit the search history.
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Conditions for Convergence

Under what conditions will we converge to a minimum?

Hard to say. But if we assume a quadratic error surface, we can

answer this if we rotate into the eigenspace of H and move such

that w∗ 7→ 0 (assume we are doing a post-mortem and know both

H and w∗).

w

w
∗

w
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The Eigenspace of H

Since H = HT , its eigenvectors

Hui = λiui i ∈ [1, W ] (4)

form a complete orthonormal basis of <W . Why?

Because for any pair, uj and uk, j 6= k,

uT
j Huk = λku

T
j uk

(

uT
k Huj

)T
=

(

λju
T
k uj

)T

⇒ 0 =
(

λk − λj

)

uT
k uj

So for λk 6= λj, the eigenvectors are orthogonal. Otherwise, they

define a plane in which all vectors are eigenvectors corresponding to

λk = λj, so we can choose any two orthogonal vectors which span

this plane. Then normalize all ui to have unit length.
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The Gradient in the Eigenspace of H

We’ve successfully constructed a new (more useful) orthonormal

basis of our original space. We can express any original vector w in

these new coordinates as:

w = w∗ +
W∑

i=1

αiui ⇔ w − w∗ =
W∑

i=1

αiui (5)

Recalling Eq 2, we compute the gradient of our second order ap-

proximation at w using Eq 5 and simplify with Eq 4:

∇E|w = H
(

w − w∗)

= H
W∑

i=1

αiui

=
W∑

i=1

αiλiui (6)
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Weight Update in the Eigenspace of H

Let’s transform our weight increment from the original coordinate

system to the new coordinates using Eq 5:

∆w(τ) = w(τ+1) − w(τ)

=



w∗ +
W∑

i=1

α
(τ+1)
i ui



 −



w∗ +
W∑

i=1

α
(τ)
i ui





=
W∑

i=1

∆α
(τ)
i ui

Recall that for Gradient Descent Search,

∆w(τ) = −η∇E|
w(τ)

= −η∇E|
w(τ) (7)

= −η
W∑

i=1

α
(τ)
i λiui (8)

where the equality in line 7 holds because we have been assuming a

quadratic error surface, and Eq 8 follows from Eq 6.
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Gradient Descent Search Convergence,
cont’d...

By inspection from Eqs 7 & 8, ∆αi = −ηλiαi. So, in the new

coordinate system,

α
(τ+1)
i = α

(τ)
i + ∆α

(τ)
i

= (1 − ηλi)α
(τ)
i (9)

Remember that we want to converge to 0 (w∗ in the original basis).

After R timesteps,

lim
R→∞

α
(R)
i = lim

R→∞
(1 − ηλi)

R α
(0)
i (10)

= 0 (11)

⇒ lim
R→∞

w(R) = w∗ (12)

iff |1 − ηλi| < 1 (13)

Finally (it took 5 slides). We will converge to the minimum if and

only if η < 2
λmax

.
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Speed of Convergence

Governed by how long it takes each of the (1− ηλi)
R to decay to 0,

under the constraint that η < 2/λmax.

The larger λi, the closer (1 − ηλi) is to 0 and so the faster will

(1−ηλi)
R decay. Therefore convergence is slowest for the smallest λi.

Specifically, convergence will be governed by how close the following

gets to zero:

max
λi

(1 − ηλi) = max
λi

(

1 −
2

λmax
λi

)

= 1 −
2λmin

λmax

So the closer λmin and λmax are, the faster we will find the minimum.

The situation becomes even less optimistic when we drop our as-

sumption of a quadratic error surface. Then H may not only be ill-

conditioned, it is generally different for every point in weight space.
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Gradient Descent Search Pros & Cons

Straightforward, iterative, tractable, locally optimal descent in error

— see demo. But we have four main objections:

1. Cannot avoid local minima, and cannot escape them (but may

occasionally overshoot them).

2. Cannot guarantee a scalable bound on time complexity. Rather,

speed to convergence governed by the condition number of the local

Hessian, which may be changing from point to point.

3. Step size constant, not sensitive to local topology. Furthermore,

has to be carefully set by hand.

4. Search direction only locally optimal.
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Addressing the Limitations

The rest of this lecture.

Want to find techniques for adapting the step size and for making

direction decisions which are optimal in more than just a local sense.

w/ both

algorithms

algorithms w/algorithms w/

non-local
direction
selection

Gradient
Descent

adaptive
step size

Also want to try to limit time complexity, storage complexity, and

the number of parameters which must be externally set by hand.

Sadly, can’t do much about local minima.
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Avoiding/Escaping Local Minima

The only way to avoid getting trapped in a local minimum is to ac-

cidentally step over it (with a step size or inertia which is locally too

high). The likelihood of this occurring depends on the optimization

technique.

Leaving local minima is possible by random perturbation. Simulated

Annealing and Genetic Algorithms are examples, but we won’t cover

them in this lecture.

Stochastic Gradient Descent is a form of injecting randomness into

Gradient Descent.

19



Stochastic Gradient Descent

Rather than computing the error gradient for all patterns, could go

through the patterns sequentially, one pattern per iteration.

∆w(τ) = ηs · −∇En|
w(τ)

In contrast to the batch version, this offers the possibility of escaping

from local minima.

Likely to be more efficient for datasets with high redundancy.

Note that value of ηs may be different than for the η in the batch

version.

Strictly speaking, it’s stochastic only if you choose the patterns

randomly.
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Using Learning Rate Schedules

In practice, error vs epoch curves exhibit distinct regions where some
definite statements about the suitability of the learning rate can be
made.

E

epoch

Once you are familiar with how your neural network is training you
will be able to guess at several learning rates, which you will want
to kick in at specific times.

You’ll see this in an upcoming homework assignment.
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Adding Momentum

∆w(τ) = −η∇E|
w(τ) + µ∆w(τ−1) (14)

µ = 0.0 µ = 0.1 µ = 0.2

Generally leads to significant improvements in speed of convergence.

See demo.

Escape from local minima possible.

Yet another parameter to set manually.
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Line Search

Let’s try to do something about the step size.

At every timestep τ , run a small subalgorithm:

1. Choose a search direction as in gradient descent:

d(τ) = −∇E|
w(τ)

2. Minimize the error along the search direction:

λ(τ) = argminλ>0 E(w(τ) + λd(τ))

NOTE: This is a one-dimensional problem!

3. Return the weight update:

∆w(τ) = λ(τ) · d(τ)
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Minimizing Error in 1 Dimension

λ1 = 0, E(λ1)

λ3, E(λ3)

λ2, E(λ2)

λ∗, E(λ∗)

λ

E(λ)

2a. Pick 3 values λ1 = 0 < λ2 < λ3 such that E(λ2) is smallest. Enter inner loop:

2b. Fit points to a parabola Ei = aλ2
i + bλi + c, 1≤i≤3 (linear regression).

2c. Compute λ∗ = − b
2a

, the parabola’s minimum; evaluate E(λ∗).

2d. If E(λ∗) ≈ E(λ2), return λ∗ and exit.

2e. Else replace {λ2, E(λ2)} by {λ∗, E(λ∗)} and goto 2b.
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A Bird’s Eye View of Line Search

TOP VIEW
CONTOURS

TOP VIEW
NEGATIVE GRADIENT

SIDE VIEW
ELEVATION

As we move in a straight line, the gradient beneath our feet keeps
changing (we’re on a curved surface). Line search will stop us when
the component of the gradient parallel to our direction of travel
is zero. Consequence: successive directions in Line Search are
perpendicular.
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How good are ⊥ Search Directions?

Gradient Descent, large η Gradient Descent, small η Line Search

In Gradient Descent Search, we may be oscillating back and forth

such that the angle between successive directions is almost 180

degrees. But we have the opportunity, by keeping η small, to follow

the optimal path to the minimum.
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Orthogonal Search Directions, cont’d...

In Line Search, by contrast, we are stuck with successive directions

that are at exactly 90 degrees to each other, always (see demo).

This is an immutable fact, regardless of the topology.

This means that, even for a 2-dimensional quadratic error surface,

we will take many steps to converge.

The picture is far messier when we consider a W -dimensional pa-

rameter space with W large (ALVINN W ≈ 4000). Throw away the

quadratic assumption, and things get messier still.
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Line Search Pros & Cons

1. No parameters to set by hand, yay!

2. Successive search directions are orthogonal. Don’t quite know

whether this is a blessing or a curse. Seems better than Gradient

Descent Search, but still somehow unsatisfactory. Could take a long

time to converge.

3. Line search requires that we evaluate E(λ) many times per iter-

ation. Each time we have to do a full forward propagation of the

training set through our neural network.
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What Can We Do About the ⊥ Directions

d(1) d(3)

d(2)

Note that, at each step, we choose a direction which ends up undoing

the progress we made on the previous step. We’ll have to make it

up again later.
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Conjugate Gradient Search

d(1) d(3)

d(2) d(4)

d(2)∗

At τ = 2, we would really like to take direction d(2)∗ instead. This

would avoid us having to repeat progress already made during step

1 on the next step.
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Conjugate Gradients, Theory Part 1

At w(τ+1),

(

−∇E|
w(τ+1)

)T
d(τ) = 0 (15)

Once we choose the next direction d(τ+1) and begin a line search

step, our position along that direction will be w(τ+1) + λd(τ+1) and

our gradient at that position will be ∇E|
w(τ+1)+λd(τ+1).

To a first order approximation,

∇E|
w(τ+1)+λd(τ+1) = ∇E|

w(τ+1)

+
(

w(τ+1) + λd(τ+1) − w(τ+1)
)T

· H

= ∇E|
w(τ+1) + λd(τ+1) TH (16)
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Conjugate Gradients, Theory Part 2

We want to have chosen our next direction d(τ+1) such that, to

a first order approximation, our gradient along this direction will

remain orthogonal to the previous direction d(τ):
(

−∇E|
w(τ+1)+λd(τ+1)

)T
d(τ) = 0 (17)

We can substitute Eq 16 into Eq 17

−
(

∇E|
w(τ+1) + λd(τ+1) TH

)T
d(τ) = 0

(

−∇E|
w(τ+1)

)T
d(τ) − λd(τ+1) THd(τ) = 0

d(τ+1) THd(τ) = 0 (18)

where the first term on the second line cancels due to Eq 15.

Pairs of directions d(τ+1) and d(τ) for which Eq 18 holds are called

mutually conjugate. They are orthogonal in the (rotated) space

where H is the identity.
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Constructing the Next Conjugate
Direction

Note that the new direction is a linear combination of the current

negative gradient and the previous search direction:

d(τ+1) = −∇E|
w(τ+1) + β(τ)d(τ) (19)

We can solve for β(τ) by first taking the transpose of Eq 19 and

then multiplying by Hd(τ) and imposing Eq 18:

d(τ+1) THd(τ) = −
(

∇E|
w(τ+1)

)T
Hd(τ) + β(τ)d(τ) THd(τ)

This yields

β(τ) =

(

∇E|
w(τ+1)

)T
Hd(τ)

d(τ) T Hd(τ)
(20)
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Can Computation of H Be Avoided?

H is costly to compute, and so we would like to avoid its evaluation

at every step. Under a quadratic error surface assumption, it can be

shown that Eq 20 reduces to the Polak-Ribiere formula:

β(τ) =

(

∇E|
w(τ+1)

)T (

∇E|
w(τ+1) −∇E|

w(τ)

)

(

∇E|
w(τ)

)T
∇E|

w(τ)

(21)

There are several competing expressions; this one is believed to

generalize better to non-quadratic error surfaces.
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The Conjugate Gradient Search Algorithm

Just like the inner-loop subalgorithm for Line Search. Prior to in-

crementing τ :

1a. Compute −∇E|
w(τ+1) (one back propagation).

1b. For τ = 1, set β(1) = 0. Else evaluate β(τ) using Eq 21.

1c. Evaluate d(τ+1) using Eq 19.

1d. Update τ = τ + 1.

Check out the demo.
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How Does Conjugate Gradient Search
Stack Up?

If we had a quadratic error surface, we would need to perform at

most W weight updates before reaching the minimum. 2-D toy

problems will be solved two steps.

Need to store previous search direction (O(W ) storage). But this

isn’t so bad.

Require multiple evaluations of the error (forward propagations through

the neural network) during line error minimization.

We need an accurate line error minimization routine since we are

using our position to set up a conjugate system. In Line Search this

wasn’t so important.

Still no chance of leaving poor local minima.
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Newton’s Method

For a quadratic error surface, our 1st order approximation to the

gradient (Eq 2) is the true gradient. Expanding about w∗ and noting

that the gradient at w∗ is 0:

∇E|w = H
(

w − w∗)

(22)

Eq 22 can be solved directly

w∗ = w − H−1∇E|w

and the corresponding weight update,

∆w = −H−1∇E|w

is called the Newton step.
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Newton’s Method: Caveats

1. The error surface isn’t really quadratic; algorithm must be applied

iteratively like everything else.

2. Computation of H−1 is O(W3).

3. Points 1 and 2 together should make you cringe. In ALVINN,

with 4000 parameters, that’s 6.4×1010 computations per iteration.

4. Additionally, if H isn’t positive definite, the algorithm could fail

to find a minimum.
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Quasi-Newton Methods

AIM: Since exact computation of H−1 is so expensive, let’s find an

approximation G(τ) which is cheaper to compute and simultaneously

ensure that it is positive definite.

At τ = 1, initialize G(1) = I.

At each timestep τ , generate a new G(τ). The G(τ) are a sequence

of increasingly better approximations to H−1.

Then apply the Newton step weight update. Use line minimization

just to make sure we’re not taken outside of the range of validity of

our quadratic approximation:

∆w(τ) = −λ(τ)G(τ)∇E|
w(τ)
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Computing G(τ+1) using BFGS

The Broyden-Fletcher-Goldfarb-Shanno procedure is the most well-

known quasi-Newton method of H−1 approximation:

p = w(τ+1) − w(τ)

v = ∇E|
w(τ+1) −∇E|

w(τ)

u =
p

pTv
−

G(τ)v

vTG(τ)v

G(τ+1) = G(τ) +
ppT

pTv
−

(

G(τ)v
)

vTG(τ)

vTG(τ)v
+

(

vTG(τ)v
)

uuT
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Technique Performance Comparison

Taken from www.mathworks.com Neural Networks Toolbox User Guide.

gdx = Variable Rate Gradient Descent, cgb = Conjugate Gradient

Search with restarts, scg = Scaled Conjugate Gradient Search, rp

= Resilient Backprop, lm = Levenberg-Marquart
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What We’ve Covered

algorithms w/

algorithms w/

Gradient
Descent

step size
adaptive

Line Search

Gradient Descent
with Variable
Learning Rate

selection
direction
non-local

Gradient Descent
with Momentum

Gradient
Conjugate
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