Neural Networks for Control Examples of Control Problems

* Getting a robot arm to pick up a soda can.

* Parallel parking a car.
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. * Getting a chemical plant to produce a steady flow of a
David S. Touretzky desired%roduct: P P Y

Spring 2004 - Control temperature, rate at which reactants are added,
and pressure inside the reaction vessel.
- Faulty controller? Plant blows up!
1
Landing An Airplane Control Theory
- Control theory includes:
At Flare Initiation At Touchdown:

Altitude h=h, Altitude:
Altitude Rate: b=, Altitude Rate:
Speed vV,

- Design of controllers
- Stability issues

- Adaptive control

Position: i

Pirch Angle: 6

\begin flare
ope Angle: ¥y,

Glide Slope Pregicted X Xy Tt Ko
Intercept Paint

Many controllers are designed by hand.

Neural nets provide a way to “learn” the controller.
Jorgensen & Schley (1990): A neural network baseline

problem for control of aircraft flare and touchdown.
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The “Plant”

The thing being controlled is called the “plant”.

Control

Signal ——{ The Plant [— Behatvmr
u(t) y(®)

The control problem: how to find the right u(t) to
produce the desired behavior y*(t)?

The plant is a black box.

Training a Forward Model

y(t)
»| Plant
u(t)— 3 Prediction
Error E
_|Forward
Model $(t)

Generate random control signals u(t).

Observe plant behavior y(t), measure prediction error E.

Back propagate error to adjust weights in forward model.
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The System Identification Problem

What does the plant do in response to input u(t) ?

A model of the plant that maps u(t)—-y(t) is
called a forward model.

y(t) = actual plant behavior
y(t) = predicted behavior

Prediction error = y(t)-y(t)

Inverse Models

An inverse model maps plant outputs back to the
control signals that produced them.

Can use an inverse model to control the plant.

Training a direct inverse model:

u(t) Plant

I8

Control (t) | Inverse
Error Model
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Robot Arm Control: Kinematics

. x (X1,X2) °
Desired behavior y = |71 )
X, -
0 0
Control signal u = |"!
92

Two possible solutions:

6,

Three Joint Planar Arm

(X, x,)

Xy — llcos(q1)+lzcos(q1+q2)+l3cos(q1+q2+q3)

X, 1;sin(qy) +1,sin(q, +d,) +1;sin(q; +q,+qs)
Desired x* . q A x Actual
State State
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The Problem of Degeneracy

Action space Sensation space

When the solution space is not convex, the
“average” solution might not be a solution!

Inverse Kinematics is Non-Convex

Dashed line (average
of the joint angles)
does not reach the

\ target.

VP94
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Direct Inverse Model Makes Errors
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Train a backprop network
as an inverse model by
randomly sampling
positions in joint space.

Learning asymptotes
after 50,000 trials.

Performance error
remains high due to non-
convexity of the solution
space.

Back-Propagating the Error
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Normal backprop calculates:
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For distal learning, also need:

onet.
5, = @ - z oE . i
0y; 7 \onet; Jy,
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Artificial Neural Networks

Distal Learning Approach

* u(t) Forward -
y (t) —»| Controller Model )

Train forward model backprop net, then freeze it.

Use backpropagated error signal to train the controller
or inverse model.

Train controller using y —¥, the

predicted performance error. “

Error Signal From Forward Model

. u(t) Forward
y (t) —| Controller Model

i acts like y;—t;, even though

i

we don't know t; = u

*

Can introduce additional error trms to get solutions

that minimize arm travel, maximize smoothness, etc.
16
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Controller training (trials to criterion)
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Train forward model first
along with direct inverse
model.

Freeze forward model.

Retrain inverse model
using forward model as
distal teacher.

Lower peformance error
than the directly trained
inverse model.

Forward Model Needn't Be Precise

3000

2000

1000

La\\n/»\,;

Why don't we need a precise
forward model?

We're only using it to
estimate the error gradient.

<

o

1000 2000 3000 4000
Forward model training (trials)

5000

50 trials of training the

forward model was “good
enough” for successful
learning. 19
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Goal-Directed Learning

Distal learning is “goal
directed”: concentrate on

% vy the regions of state space
/// LIl 1;;;% you care about.

Don't have to sample the
whole space.

Error only needs to be low
in the region of state space
you care about.
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Static vs. Dynamic Environments

Static: actions have fixed effects. Current “state” does
not determine the outcome of an action.

Example: controlling an arm by specifying
the 8, and 6, angles directly.

Dynamic environments: state matters. Actions have
different effects in different states.

Example: controlling an arm by specifying
torques t; and t, for the motors.

State x(t) =(01, 65)
Action u(t) = (tq, 15)

20
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Distal Teacher with State

State x(t—1)

| |

Intent a(t)
p(t) — Controller >

Forward

Model | Sensations

y(t)

The forward model predicts both the next state x(t)
and the sensations associated with it, ¥(t).

Controller function:
u(t) = f(p(t),x(t-1),W)
where W denotes the learned weights.
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Training A Dynamic Model

Define performance error:

J = 2Ely -y )

Let u = h(x,y", W)
Calculate the gradient:

_aJ] oy’ ox' ou'
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*

=(y
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Recurrent Network with Forward Model

David S. Touretzky

Next-State Sensatlon
Units Units

x(t) y(t)

Input Action
Units Units

a(t)

Nguyen and Widrow's
Truck Backer-Upper

Spring 2004

22

24



Truck Backer-Upper

R Desired state:
- Xirailer = Xdock
e Yirater = Ydock
4 » etrailer = O
0., = (don'tcare)

| .
(. Control signal:

= steering direction
| final state
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Train the Neural Net Truck Emulator

steering

signalj e—m

I
Truck statek+1,
Dynamics

stateg | Neural-Net ktl o Ao Forward
Emulator
¢  Model
error
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System Overview

u(t)
!-[\.!millg
Neural-Net | "% -
Controller Trailer Truck

Kinematics —’ x(t+1)

Il A
slatey

Stale) . |

delay

Backprop Through Time

Truck Model

state,y state, state, stateg .
intial state

s, s,
sase
[}

RlﬁlCK
final state

Spring 2004
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Training the Truck Backer-Upper

* Sixteen “lessons”.

 Start with easy problems:
- Close to the dock

- Heading correct within 30°

e Introduce harder cases:
- Longer paths

- Worse headings

e Total training: ~ 20,000 trials

Results of Training
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Some Harder Training Problems

‘ Facing wrong way

Modeling Arm Dynamics (Jordan)

—

Spring 2004
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Dynamic Arm Model

l,cosq, (t)+1,cos(q;(t)+q,(t)
l,sinq, (t)+1,sin(q, (t)+q,(t))

= joint position state

= joint velocity state

= joint acceleration desired behavior
= torque control signal

4 Q.99
|

M(q)g + Clq.q)qg + Glq) = 7

inertia matrix
coriolis & centripetal terms
gravity term

oz
Il

Forward Model Training Heuristics

1) Define random equilibrium positions for the arm,
instead of generating random torques.

M(q)q + Clq,q)q + G(q) = k,(q-u) + k,(q-u)

2) Use the target trajectories as controls to train the
forward model.
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Learning Arm Dynamics

Assume sensors supply ¢ and ¢

Forward dynamics:
d = M '(q)[t-C(q,q)a-G(q)]

Inverse dynamics:
What torque 7 is needed to produce ¢ given q and ¢q?

Tough problem: can't sample the state space randomly.
34

Composite Control System

maintain state

Controller

\ W

Feedforward | 4
Controller

Arm

Forward

— —Model — — _<5

back-propagate
error
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Performance Improves w/Learning

trial 0 trial 30

(a) )
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After Learning

i A joint angles

\//\ é;/\v/\joint torques

J—

tangential velocity

77777777777777777777777777
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Before Learning

joint angles

’// \\\ \\

T T~ ex ,’/ ..

[N koo~ 7 7 joint torques
z
I tangential velocity

Simultaneous Training

Can train forward and inverse models simultaneously:
Train forward model on prediction error y—y.
Train inverse model on performance error y —y.

Takes more trials to learn, but you don't have to
train the forward model on the whole state space.

Focus only on desired trajectories.
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Simultaneous Training of

Summa
Forward Model and Controller Ty
* Difference between “supervised” and “unsupervised”

trial 0 trial 30 learning is not so sharp.

- The “teacher” is the forward model.

e Environment acts as a teacher for a forward model.

* Forward model can then supply teaching signal for
training an inverse model.

(a) (b) - Works even when the inverse is not unqiue.
* Can be extended to dynamic models, including those

with unknown time delays.
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