Computational Learning Theory

15-496/782: Artificial Neural Networks David S. Touretzky

Spring 2004

1

What is Computational Learing Theory?

Theoretical analysis of machine learning algorithms:

- How many examples required to learn something?
 - This is called the **sample complexity**.
- How much time required to learn it?
 - This is called the **computational complexity**.

2

Concept Learning

Let X denote an instance space.

A **concept** is a collection of points in X.

Example: $X = \{A, B, C, D, E\}$

Concepts: $c_1 = \{A, C\}$

 $c_2 = \{A, B, D, E\}$

There are $2^5 = 32$ distinct concepts over the space X.

Concept Classes

Let $X = R^2$: points in the plane.

X is infinite.

How can we define concepts over X?

Concept class $\mathbf{C}:$ set of concepts defined according to some rule.

Lots of rules are possible...

4

15-496/782: Artificial Neural Networks

David S. Touretzky

Spring 2004

Concept Class: "Axis-Aligned Rectangles"

Four parameters: (x_1, y_1) and (x_h, y_h)

Perfect fit requires infinite training data.

5

Concept Class: "Linear Half-Planes"

$$w_0 + w_1 x_1 + w_2 x_2 > 0$$

Perfect fit requires infinite training data.

6

Searching Infinite Concept Classes

Let $c \in C$ be the concept we're trying to learn.

How can we find c when C is infinite?

We can't. But...

We can come close.

The more training data, the closer we should come.

How close can we get?

7

PAC Learning (Valiant, 1984)

Probably $p > 1-\delta$, where $\delta < 1/2$ **A** pproximatelyfractional error $< \epsilon < 1$ **C**orrectfor points drawn from D

A PAC learner will likely (with prob. $1-\delta$) come pretty close (within a fraction ϵ) to the correct concept, given training data drawn from the distribution D.

How many samples m are required?

Learning Strategy for Axis-Aligned Rectangles

Pick the tightest rectangle that encloses all the positive instances.

(Algorithm avoids false positives. False negatives revise h.)

How many samples m are required to meet the PAC bound?

$$m \; \geqslant \; \frac{4}{\varepsilon} ln \frac{4}{\delta}$$

Proof to follow.

9

Size of Symmetric Difference Between Concepts Gives Error Measure

c = target concept

h = hypothesis concept

$$error(h) = Pr_{x \in D}[c(x) \neq h(x)]$$

-Depends on D

Oracle EX(c, D) generates points $\langle x, c(x) \rangle$ drawn from D, where c(x) = 0 or 1.

Require that: error(h) $< \epsilon$ with probability $1-\delta$

10

Ideal PAC Learner

- ullet The number of calls to EX(c,D) is small.
- The amount of computation to revise h with each new example is small.
- For the output h, error(h) is small.

Axis-Aligned Rectangles

Let R denote the target concept to be learned.

12

Axis-Aligned Rectangles: Hypothesis R'

Let R' denote the current hypothesis: the tightest rectangle that encloses all positive samples.

Due to this choice of learning algorithm, $R' \nmid R$.

13

Error Strip T

Define T to have weight exactly $\epsilon/4$.

14

Constraints on T

T' has weight > $\epsilon/4$ iff T' \supset T

 $T'\supset T$ iff no point in T appears in the sample S.

What is the probability that m independent draws from D all miss T?

$$(1-\epsilon/4)^{m}$$

Same analysis holds for the other three strips. So prob. that **any** strip has weight $> \epsilon/4$ is:

at most
$$4(1-\epsilon/4)^m$$

.5

Deriving m

Choose m such that $4(1-\epsilon/4)^m \leq \delta$.

$$(1-\epsilon/4)^{\mathrm{m}} \leq \delta/4$$
 divide by 4

Note:
$$(1-x) \le e^{-x}$$
, so...

$$e^{-\epsilon m/4} \leq \delta/4$$
 by substitution

$$-\epsilon \, m/4 \leq \ln(\delta/4)$$
 take the log

$$m \geqslant \frac{4}{\epsilon} \ln \frac{4}{\delta}$$
 rearrange

Definition of the PAC Model

Let C be a concept class over X.

C is **PAC Learnable** if there is an algorithm L such that:

for every $c \in C$ for every distribution D on X for all $\epsilon, \delta \in [0, 1/2]$

if L has access to EX(c,D) and ϵ and δ , then:

with probability $\geqslant 1-\delta$, L outputs a hypothesis $h \in C$ such that $error(h) \leqslant \epsilon$.

17

Computational Complexity

Concept class C is **efficiently PAC-learnable** if L runs in time polynomial in $1/\epsilon$, $1/\delta$, and size(c).

 ϵ is the error parameter δ is the confidence parameter

Assume each call to EX(c,D) takes one unit of time.

Concept class C = axis-aligned rectangles is efficiently PAC-learnable.

18

Families of Problems

 C_n = concepts over n variables.

points in \mathbb{R}^n variable assignments in $[0, 1]^n$

Family $C = \bigcup_{n \ge 1} C_n$

C is efficiently PAC-learnable if L runs in time polynomial in n, $1/\epsilon$, and $1/\delta$.

9

Learning Boolean Conjunctions

Given a set of variables x_1 , x_2 , ... x_n Instance space $X = \{0, 1\}^n$ of possible variable assignments.

Concept class C of conjucations of literals. Examples:

 $\mathbf{X}_1 \wedge \bar{\mathbf{X}}_3 \wedge \mathbf{X}_4$ $\mathbf{X}_2 \wedge \mathbf{X}_5 \wedge \bar{\mathbf{X}}_5$ (empty)

This class is efficiently PAC-learnable.

Proof?

Learning Boolean Conjunctions

Initial hypothesis:

$$\mathbf{h} = \mathbf{x}_1 \wedge \bar{\mathbf{x}}_1 \wedge \mathbf{x}_2 \wedge \bar{\mathbf{x}}_2 \wedge \dots \wedge \mathbf{x}_n \wedge \bar{\mathbf{x}}_n$$

Algorithm:

Generate examples with EX(c,D).

Ignore negative examples.

For positive example \mathbf{a} :

if $a_i = 0$, delete x_i from h

if $a_i = 1$, delete \bar{x}_i from h

To meet desired confidence level, we need:

$$m \geqslant \frac{2n}{\epsilon} \left[\ln(2n) + \ln(\frac{1}{\delta}) \right]$$

Proof...

21

Proof of Sample Complexity Bound for Boolean Conjunctions

h(x) contains at most 2n terms.

Note that $Terms(h) \supseteq Terms(c)$.

Error only occur when

$$h(x)=0$$
 but $c(x)=1$

Let z be a term in h but not in c.

Define $p(z) = Pr_{a \in D}[c(a)=1 \text{ and } z \text{ is } 0 \text{ in } a]$

Every error in h is caused by at least one literal z.

So
$$error(h) \leq \sum_{z \in h} p(z)$$

22

Proof (cont.)

Call a literal 'bad' if $p(z) \ge \epsilon/2n$.

Note: retaining the non-bad literals of h, even if not in c, cannot violate the error bound ϵ .

If h has no bad literals, then:

$$\begin{array}{ll} error(h) & \leqslant & \displaystyle \sum_{z \in h} p(z) \\ & \leqslant & 2 \, n \cdot (\epsilon/2 \, n) \\ & = & \epsilon \end{array}$$

So the error constraint will be satisfied.

Proof (cont.)

For any bad literal z, a call to EX(c,D) will delete it with probability $> \epsilon/2$ n.

Prob. of z remaining in h after m calls to EX(c,D) is

$$\leq (1-\epsilon/2n)^m$$
.

Prob. that h has some bad literal remaining after m calls to EX(c,D) is

$$\leq 2 \mathbf{n} \cdot (1 - \epsilon/2 \mathbf{n})^{\mathrm{m}}$$
.

Proof (cont.)

To meet confidence bound, we need:

$$\begin{array}{lll} 2n\cdot(1-\epsilon/2n)^m & \leqslant & \delta \\ & (1-\epsilon/2n)^m & \leqslant & \delta/2n & \text{divide by } 2n \\ \\ using & (1-x) & \leqslant & \epsilon xp(-x), \text{ we get...} \\ \\ exp(-\epsilon m/2n) & \leqslant & \delta/2n \\ & & -\epsilon m/2n & \leqslant & \ln(\delta/2n) & \text{take log} \\ & & \epsilon m/2n & \geqslant & \ln(2n) + \ln(1/\delta) & \text{negate} \\ & & m & \geqslant & \frac{2n}{\epsilon} [\ln(2n) + \ln(1/\delta)] \end{array}$$

25

PAC Bounds for Continuous Spaces

PAC bound: if target $c \in C$, sufficient to see

$$m \geq \frac{1}{\epsilon} \left[\ln \left(|C| \right) + \ln \left(\frac{1}{\delta} \right) \right]$$

Not a good bound for 'initial subintervals'. Problem: |C| is infinite.

But not that many 'really different' subintervals. Intuitively, we should be measuring degrees of freedom.

26

PAC Bounds (cont.)

Define C[m] = maximum number of ways to split m points using concepts in class C.

Only C[m] "different" concepts in C w.r.t. m examples.

Theorem: if target $c \in C$, then

$$m \ \geqslant \left\lceil \log_2(2\,C[\,2\,m\,]) \ + \ \log_2(\frac{1}{\delta}) \right\rceil$$

So "complexity" of class C has to do with the growth rate of C[m].

27

Examples of C[m]

What is C[m] for initial subintervals?

m+1

What is C[m] for intevals [a,b]?

m(m+1)/2 + 1

What is C[m] for linear separators in the plane?

m(m-1) + 2

Examples of C[m]

What is C[m] for axis-parallel boxes?

 $\Theta(m^4)$

Can think of $\frac{\log C[m]}{\log m}$ as the effective number of degrees of freedom.

29

"Shattering" a Concept Class

Definition: a set of points S is **shattered** by a concept class C if there are concepts in C that split S in all of the $2^{|S|}$ possible ways.

In other words, all ways of classifying points in S are expressible in C.

+

.

Vapnik-Chervonenkis Dimension

Definition: the **VC-dimension** of a concept class C is the size of the largest set of points that can be shattered by C.

If VCdim(C) = d, that means there exists <u>some</u> set of d points that can be shattered, but there is <u>no</u> set of d+1 points that can be shattered.

Example: VCdim(linear threshold functions in 2D) is 3.

3.1

Examples of VC Dimension C = "intervals of the real line" VCdim = 2 can't shatter 3 points VCdim = 4

Convex Polygons in the Plane

For convex d-gons in the plane, the VC dimension is 2d + 1.

Construction for (a) fewer positive labels, (b) fewer negative labels.

33

More VC Dimension Examples

C = "monotone disjunctions of n features"

$$\mathbf{x}_1 \vee \mathbf{x}_3 \vee \mathbf{x}_7$$

 $VC \dim = n$

C = "all functions on n features"

$$VC \dim = 2^n$$

.

VC Dimension and Complexity

Theorem: $C[m] = O(m^{VCdim(C)})$

Theorem: If target $c \in C$, then

$$m = O\left[\frac{1}{\epsilon}\left[VCdim(C)log(1/\epsilon) + log(1/\delta)\right]\right]$$

Why is VC Dimension Important?

- Measures the "richness" or "power" of a representation for describing concepts.
- \bullet Tells us something about the difficulty of learning concepts in that space.
- Universal measure: applies to neural nets, decision trees, Boolean formulas, etc.

VC Dimension of Perceptrons

Theorem: for $n \ge 1$, let P_n be the simple real perceptron with n inputs. Then:

$$VCdim(P_n) = n + 1$$

Proof:

Use Radon's theorem to show that n+2 points in \mathbb{R} cannot be shattered.

Show by construction that n+1 points can be shattered.

37

Shattering n+1 Inputs

Consider points in \mathbb{R}^n . Let e_i be the point with coordinate i=1, rest zero. Let o be the origin. Let $T=\{o, e_1, e_2, ..., e_n\}$

Let T_1 be some concept that classfies points in T. If $e_i \in T_1$ set weight $w_i = +1$, else set $w_i = -1$ If $o \in T_1$ set threshold $\theta = -1/2$, else set $\theta = +1/2$. The resulting perceptron recognizes concept T_1 .

.

VC Dimension of Feedforward Nets

Theorem due to Cover (1968), Baum & Haussler (1989):

Let Q be an arbitrary feedforward neural net with w weights that consists of linear threshold gates.

Then VCdim(Q) = O(w log w).

Feedforward Networks (cont.)

Theorem due to Karpinski & MacIntyre (1995):

Let Q be a feedforward network with a linear threshold unit as output unit, and the remaining N units having the standard sigmoid activation function.

If Q has w variable weights and thresholds, then

 $VCdim(Q) \le (wN)^2 + 11wN \log_2 (18wN^2)$

Piecewise Polynomial Activation Fns.

Consider an arbitrary feedforward neural network containing w weights, whose units employ piecewise polynomial activation functions.

Goldberg & Jerrum (1995): if depth is unbounded, VC-dimension grows as $O(w^2)$.

Bartlett et al. (1998): if depth is bounded, then VC-dimension grows as O(w log w).