Computational Learning Theory What is Computational Learing Theory?

Theoretical analysis of machine learning algorithms:

° i i ?
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David S. Touretzky - This is called the sample complexity.

Spring 2004 . . .
* How much time required to learn it?

- This is called the computational complexity.

Concept Learning Concept Classes
Let X denote an instance space. Let X = R?: points in the plane.
A concept is a collection of points in X. X is infinite.

How can we define concepts over X?
Example: X = {A,B,C,D, E}
Concepts: c;={A C}

¢, ={A, B,D,E} Concept class C : set of concepts defined according to

some rule.

5 Lots of rules are possible...
There are 2° = 32 distinct concepts over the space X.
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Concept Class:
“Axis-Aligned Rectangles”

Four parameters: (x;,yl) and (x,,y,)

Perfect fit requires infinite training data.

Searching Infinite Concept Classes

Let ce C be the concept we're trying to learn.

How can we find ¢ when C is infinite?
We can't. But...

We can come close.
The more training data, the closer we should come.

How close can we get?
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Concept Class:
“Linear Half-Planes”

\\\\\\\\

//

W, + WX, + w,x, > 0

Perfect fit requires infinite training data.

PAC Learning (Valiant, 1984)

Probably p > 1-5, where 6§<1/2
Approximately fractional error < ¢ < 1
Correct for points drawn from D

A PAC learner will likely (with prob. 1-6)
come pretty close (within a fraction ¢) to the
correct concept, given training data drawn
from the distribution D.

How many samples m are required?
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Learning Strategy for
Axis-Aligned Rectangles

Pick the tightest rectangle that _ m
encloses all the positive instances. -

(Algorithm avoids false positives.
False negatives revise h.)

How many samples m are required to meet the PAC bound?

Proof to follow.

Ideal PAC Learner

* The number of calls to EX(c,D) is small.

* The amount of computation to revise h with each
new example is small.

* For the output h, error(h) is small.
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Size of Symmetric Difference Between
Concepts Gives Error Measure

Instance space
O c = target concept
c bl 'h = hypothesis concept

xenlC(X)#h(x)]

* Depends on D
Oracle EX(c,D) generates points (x, c(x))
drawn from D, where c(x) = 0 or 1.

error(h) = Pr

Require that: error(h) < e with probability 1-6
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Axis-Aligned Rectangles

Let R denote the target concept to be learned.

o+
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.+
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Axis-Aligned Rectangles:
Hypothesis R'

Let R' denote the current hypothesis: the tightest
rectangle that encloses all positive samples.

Due to this choice of learning algorithm, R' U R.

Constraints on T

T' has weight > ¢/4 iff T'>T .
T'oT iff no point in T appears in the sample S.

What is the probability that m independent draws
from D all miss T?
(1—e/4)™

Same analysis holds for the other three strips.
So prob. that any strip has weight > ¢/4 is:

at most 4(1—¢/4)"
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Error Strip T

Define T to have weight exactly €/4.

Deriving m
Choose m such that 4(1-€/4)™ < 5.
(1-€e/4)™ < §/4 divide by 4
Note: (1-x) < e ¥, so...
e ™ < 5/4 by substitution

—em/4 < In(s§/4) take the log

m > 4—]11;i rearrange
€

David S. Touretzky Spring 2004
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Definition of the PAC Model

Let C be a concept class over X.
C is PAC Learnable if there is an algorithm L such that:

forevery c € C
for every distribution D on X
forall €,6 € [0, 1/2]

if L has access to EX(c,D) and € and §, then:

with probability = 1-5,
L outputs a hypothesis h € C
such that error(h) < e.

Families of Problems

C_ = concepts over n variables.

n

points in R"
variable assignments in (0, 1]"

Family C = U, C,

C is efficiently PAC-learnable if L runs in time
polynomial in n, 1/¢, and 1/6§.
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Computational Complexity

Concept class C is efficiently PAC-learnable if
L runs in time polynomial in 1/¢, 1/5, and size(c).

€ is the error parameter
6 is the confidence parameter

Assume each call to EX(c,D) takes one unit of time.
Concept class C = axis-aligned rectangles is
efficiently PAC-learnable.

18

Learning Boolean Conjunctions

Given a set of variables x;, x, ... X

Instance space X = {0, 1}" of
possible variable assignments.

Concept class C of conjucntions of literals. Examples:
X, ARy A X,
X, A X; A Xy (empty)

This class is efficiently PAC-learnable.

Proof?

20
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Learning Boolean Conjunctions

Initial hypothesis:
h=x A% AX AKX A AX AKX,
Algorithm:
Generate examples with EX(c,D).
Ignore negative examples.
For positive example a:
if a; = 0, delete x, from h

if a; = 1, delete %, from h

To meet desired confidence level, we need:

20020 + m(%)}

m =

Proof...
21

Proof (cont.)

Call a literal 'bad' if p(z) > €/2n.

Note: retaining the non-bad literals of h, even if not in c,
cannot violate the error bound e.

If h has no bad literals, then:

> plz)

zeh
< 2n-(e/2n)
= €

error(h)

N

So the error constraint will be satisfied.

23
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Proof of Sample Complexity Bound
for Boolean Conjunctions

h(x) contains at most 2n terms.
Note that Terms(h)=2Terms(c).
Error only occur when

h(x)=0 but c(x)=1

Let zbe a term in h but not in c.
Define p(z) = Pr,_plc(a)=1 and zis O in a|

Every error in h is caused by at least one literal z.

So error(h) < Y p(z)

zeh

Proof (cont.)

For any bad literal z, a call to EX(c,D)
will delete it with probability > €/2n.

Prob. of z remaining in h after m calls to EX(c,D) is
< (1-€/2n)™.

Prob. that h has some bad literal remaining after
m calls to EX(c,D) is

< 2n(1-€e/2n)™.

Spring 2004

22

24



Proof (cont.) PAC Bounds for Continuous Spaces

PAC bound: if target ceC, sufficient to see
To meet confidence bound, we need:

2n(1—e/2n) < & m > Lm(c)+nL)
(1-e/2n)™ < 6/2n divide by 2n € o
using (1-x) < exp(—x), we get... } + + | - - - }
0 : 1
exp(—em/2n) < §/2n
—em/2n < In(6/2n) take log Not db d for ‘initial subint s
ot a good bound for 'initial subintervals'.
cm/2n. > 1;1(2n) + In(1/3) negate Problem: |C| is infinite.
m > ZZ/n(2n)+In(1/s)]
€ But not that many 'really different' subintervals.
Intuitively, we should be measuring degrees of freedom.
25 26
PAC Bounds (cont.) Examples of C[m]
Define C[m] = maximum number of ways to split m What is C[m] for initial subintervals?
points using concepts in class C. m+1

Only C[m] “different” concepts in C w.r.t. m examples. What is C[m] for intevals [a,b] ?
m(m+1)/2 + 1
Theorem: if target ceC, then
What is C[m] for linear separators in the plane?

m > |log,(2C[2m]) + log, (%) m(m-1) + 2

So “complexity” of class C has to do with the growth
rate of C[m].

27 28
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Examples of C[m]

What is C[m] for axis-parallel boxes?
O(m*)
logC[m]

logm
effective number of degrees of freedom.

Can think of as the

29

Vapnik-Chervonenkis Dimension

Definition: the VC-dimension of a concept class C is
the size of the largest set of points that can be
shattered by C.

If VCdim(C) = d, that means there exists some set of d
points that can be shattered, but there is no set of d+1
points that can be shattered.

Example: VCdim(linear threshold functions in 2D)
is 3.

31
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“Shattering” a Concept Class

Definition: a set of points S is shattered by a concept
class C if there are concepts in C that split S in all of
the 2 possible ways.

In other words, all ways of classifying points in S are
expressible in C.

Example: any 3 non-colinear points can be shattered by
linear threshold functions in 2D. No set of 4 points
can.

30

Examples of VC Dimension
C = “intervals of the real line” VCdim = 2

can't shatter 3 points

C = “axis-parallel boxes in 2D” VCdim = 4

32
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Convex Polygons in the Plane

For convex d-gons in the plane, the VC dimension
is 2d + 1.

Construction for (a) fewer positive labels, (b) fewer
negative labels.
(a) +

VC Dimension and Complexity

Theorem: Clm] = O[mVCdim[C)J

Theorem: If target ceC, then

L vedim(C)log(1/e) + log(1/s)]

m = O|—|
€

15-496/782: Artificial Neural Networks

33

35

More VC Dimension Examples

C = “monotone disjunctions of n features”

Xy V X3V Xy VC dim =n

C = “all functions on n features”

VC dim = 2"

34

Why is VC Dimension Important?

* Measures the “richness” or “power” of a
representation for describing concepts.

* Tells us something about the difficulty of learning
concepts in that space.

* Universal measure: applies to neural nets, decision
trees, Boolean formulas, etc.

36
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VC Dimension of Perceptrons

Theorem: for n>1, let P, be the simple real
perceptron with n inputs. Then:

VCdim(P,)) = n + 1

Proof:

Use Radon's theorem to show that n+2 points in R
cannot be shattered.

Show by construction that n+1 points can be shattered.
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VC Dimension of Feedforward Nets

Theorem due to Cover (1968), Baum &Haussler (1989):

Let Q be an arbitrary feedforward neural net with w
weights that consists of linear threshold gates.

Then VCdim(Q) = O(w log w).

39
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Shattering n+1 Inputs

Consider points in R".
Let e, be the point with coordinate i=1, rest zero.
Let o be the origin. Let T = {0, e, e,..., e}

Let T, be some concept that classfies points in T.
If e,€T, set weight w;=+1, else set w,=-1

If 0€T, set threshold 0=—-1/2, else set 6=+1/2.
The resulting perceptron recognizes concept T;.

€3
€,
o el
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Feedforward Networks (cont.)

Theorem due to Karpinski & MacIntyre (1995):

Let Q be a feedforward network with a linear threshold
unit as output unit, and the remaining N units having
the standard sigmoid activation function.

If Q has w variable weights and thresholds, then

VCdim(Q) < (wN)2 + 11wN log, (18wN2)

40
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Piecewise Polynomial Activation Fns.

Consider an arbitrary feedforward neural network
containing w weights, whose units employ piecewise
polynomial activation functions.

Goldberg & Jerrum (1995): if depth is unbounded,
VC-dimension grows as O(w?2).

Bartlett et al. (1998): if depth is bounded, then
VC-dimension grows as O(w log w).
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