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Bayesian Inference
We’ve seen Bayesian inference before, remember

· p(θ) is the prior probability of a parameter θ before
having seen the data.

· p(D|θ) is called the likelihood. It is the probability of the
data D given θ

We can use bayes’ rule to determine the posterior
probability of θ given the data, D,

p(θ|D) =
p(D|θ)p(θ)

p(D)

In general this will provide an entire distribution over
possible values of θ rather that the single most likely value
of θ.
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Bayesian ANNs?

We can apply this process to neural networks and come up
with the probability distribution over the network weights, w,
given the training data, p(w|D).

As we will see, we can also come up with posterior
distribution over:

· the network output

· a set of different sized networks

· the outputs of a set of different sized networks
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Why should we bother?
Instead of considering a single answer to a question,
Bayesian methods allow us to consider an entire
distribution of answers. With this approach we can naturally
address issues like:

· regularization (overfitting or not),

· model selection / comparison,

without the need for a separate cross-validation data set.

With these techniques we can also put error bars on the
output of the network, by considering the shape of the
output distribution p(y|D).
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Overview
We will be looking at how, using Bayesian methods, we can
explore the follow questions:

1. p(w|D,H)? What is the distribution over weights w

given the data and a fixed model, H?

2. p(y|D,H)? What is the distribution over network outputs
y given the data and a model (for regression problems)?

3. p(C|D,H)? What is the distribution over predicted class
labels C given the data and model (for classification
problems)?

4. p(H|D)? What is the distribution over models given the
data?

5. p(y|D)? What is the distribution over network outputs
given the data (not conditioned on a particular model!)?
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Overview (cont.)
We will also look briefly Monte Carlo sampling methods to
deal with using Bayesian methods in the “real world”.

A good deal of current research is going into applying such
methods to deal with Bayesian inference in difficult
problems.
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Maximum Likelihood Learning
Optimization methods focus on finding a single weight
assignment that minimize some error function (typically a
least squared error function).

This is equivalent to finding a maximum of the likelihood
function, i.e. finding a w∗ that maximizes the probability of
the data given those weights, p(D|w∗).
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1. Bayesian learning of the weights
Here we consider finding a posterior distribution over
weights,

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w) dw

.

In the Bayesian formalism, learning the weights means
changing our belief about the weights from the prior, p(w),
to the posterior, p(w|D) as a consequence of seeing the
data.
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Prior for the weights
Let’s consider a prior for the weights of the form

p(w) =
exp(−αEw)

Zw(α)

where α is a hyperparameter (a parameter of a prior
distribution over another parameter, for now we will assume
α is known) and normalizer Zw(α) =

∫
exp(−αEw) dw.

When we considered weight decay we argued that smaller
weights generalize better, so we should set Ew to

Ew =
1

2
||w||2 =

1

2

W∑
i=1

w2

i .
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Example prior
A prior over two weights.
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Likelihood of the data
Just as we did for the prior, let’s consider a likelihood
function of the form

p(D|w) =
exp(−βED)

ZD(β)

where β is another hyperparameter and the normalization
factor ZD(β) =

∫
exp(−βED) dD (where

∫
dD =

∫
dt1 . . . dtN )

If we assume that after training the target data t ∈ D obeys
a Gaussian distribution with mean y(x;w), then the
likelihood function is given by

p(D|w) =
N∏

n=1

p(tn|xn,w) =
1

ZD(β)
exp(−

β

2

N∑
n=1

{y(x;w)− tn}2)
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Posterior over the weights
With p(w) and p(D|w) defined, we can now combine them
according to Bayes rule to get the posterior distribution,

p(w|D) =
p(D|w)p(w)

P (D)
=

1

ZS
exp(−βED) exp(−αEw)

=
1

ZS
exp(−S(w))

where
S(w) = βED + αEw

and

ZS(α, β) =

∫
exp(−βED − αEw) dw
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Posterior over the weights (cont.)
If we imagine we want to find the maximum a posteriori
weights, wMP (the maximum the posterior distribution), we
could minimize the negative logarithm of p(w|D), which is
equivalent to minimizing

S(w) =
β

2

N∑
n=1

{y(x;w) − tn}2 +
α

2

W∑
i=1

w2

i .

We’ve seen this before, it’s the error function minimized with
weight decay! The ratio α/β determines the amount we
penalize large weights.
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Example of Bayesian Learning
A classification problem with two inputs and one logistic
output.
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2. Finding a distribution over outputs
Once we have the posterior of the weights, we can consider
the output of the whole distribution of weight values to
produce a distribution over the network outputs.

p(y|x,D) =

∫
p(y|x,w)p(w|D) dw

where we are marginalizing over the weights. In general, we

require an approximation to evaluate this integral.
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Distribution over outputs (cont.)
If we approximate p(w|D) as a sufficiently narrow Gaussian,
we arrive at a gaussian distribution over the outputs of the
network,

p(y|x,D) ≈
1

2πσ
1/2

y

exp(−
(y − yMP )2

2σ2
y

),

The mean yMP is the maximum a posteriori network output
and the variance σ2

y = β−1 + gTA−1g, where A is the
Hessian of S(w) and g ≡ ∇wy|wMP

.
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Example of Bayesian Regression
The figure is an example of the application of Bayesian
methods to a regression problem. The data (circles) was
generated from the function, h(x) = 0.5 + 0.4 sin(2πx).
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3. Bayesian Classification with ANNs
We can apply the same techniques to classification
problems where, for the two classes, the likelihood function
is given by,

p(D|w) =
∏
n

y(xn)t
n

(1 − y(xn))1−tn

= exp(−G(D|w))

where G(D|w) is the cross-entropy error function

G(D|w) = −
∑
n

{tn ln y(xn) + (1 − tn) ln(1 − y(xn))}
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Classification (cont.)
If we use a logistic sigmoid y(x;w) as the output activation
function and interpret that as P (C1|x,w)), then the output
distribution is given by

P (C1|x,D) =

∫
y(x;w)p(w|D) dw

Once again we have marginalized out the weights.
As we did in the case of regression, we could now apply
approximations to evaluate this integral (details in the
reading).
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Example of Bayesian Classification

Figure 1 Figure 2

The three lines in Figure 2 correspond to network outputs of 0.1, 0.5, and 0.9. (a) shows the

predictions made by wMP . (b) and (c) show the predictions made by the weights w
(1) and

w
(2). (d) shows P (C1|x,D), the prediction after marginalizing over the distribution of

weights.
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What about α and β?
Until now, we have assumed that the hyperparameters are
known a priori, but in practice we will almost never know the
correct form of the prior. There exist two possible
alternative solutions to this problem:

1. We could find their maximum a posteriori values in an
iterative optimization procedure where we alternate
between optimizing wMP and the hyperparameters
αMP and βMP

2. We could be proper Bayesians and marginalize (or
integrate) over the hyperparameters. For example

p(w|D) =
1

p(D)

∫ ∫
p(D|w, β)p(w|α)p(α)p(β) dα dβ.

Bayesian Methods for Neural Networks – p.21/29



4. Bayesian Model Comparison
Until now, we have been dealing with the application of
Bayesian methods to a neural network with a fixed number
of units and a fixed architecture.

With Bayesian methods, we can generalize learning to
include learning the appropriate model size and even model
type.

Consider a set of candidate models Hi that could include
neural networks with different numbers of hidden units, RBF
networks and other models.
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Model Comparison (cont.)
We can apply Bayes’ theorem to compute the posterior
distribution over models, then pick the model with the
largest posterior.

P (Hi|D) =
p(D|Hi)P (Hi)

p(D)

The term p(D|Hi) is called the evidence for Hi and is given
by

p(D|Hi) =

∫
p(D|w,Hi)p(w|Hi) dw.

The evidence term balances between fitting the data well
and avoiding overly complex models.
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Model evidence p(D|Hi)
Consider a single weight, w. If we assume that the posterior
is sharply peaked around the most probable value, wMP ,
with width ∆wposterior we can approximate the integral with
the expression

p(D|Hi) ≈ p(D|wMP ,Hi)p(wMP |Hi) ∆wposterior.

If we also take the prior over the the weights to be uniform
over a large interval ∆wprior then the approximation to the
evidence becomes

p(D|Hi) ≈ p(D|wMP ,Hi)(
∆wposterior

∆wprior
).

The ratio ∆wposterior/∆wprior is called the Occam factor and
penalizes complex models.
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Illustration of the Occam factor
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5. Committee of models
We can go even further with Bayesian methods. Rather
than picking a single model we can marginalize over a
number of different models.

p(y|x,D) =
∑

i

p(y|x,Hi)P (Hi|D)

The result is a weighted average of the probability
distributions over the outputs of the models in the
committee.
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Bayesian Methods in Practice
Bayesian methods are almost always difficult to apply
directly. They involve integrals that are intractable except in
the most trivial cases.

Until now, we have made assumptions about the shape of
the distributions in the integrations. For a wide array of
problems these assumption do not hold and may lead to
very poor performance.

Typical numerical integration techniques are unsuitable for
the integrations involved in applying Bayesian methods,
where the integrals are over a large number of dimensions.

Monte Carlo techniques offer a way around this problem.
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Monte Carlo Sampling Methods
We wish to evaluate integrals of the form:

I =

∫
F (w)p(w|D) dw

The idea is to approximate the integral with a finite sum,

I ≈
1

L

L∑
i=L

F (wi)

where wi is a sample of the weights generated from the
distribution p(w|D). The challenge in Monte Carlo method
is that it is often difficult to sample from p(w|D) directly.

Bayesian Methods for Neural Networks – p.28/29



Importance Sampling
If sampling from the distribution p(w|D) is impractical, we
could sample from a simpler distribution q(w), from which it
is easy to sample. Then we can write

I =

∫
F (w)

p(w|D)

q(w)
q(w) dw ≈

1

L

L∑
i=1

F (wi)
p(wi|D)

q(wi)

In general we cannot normalize p(w|D) so we use a
modified form of the approximation with an unnormalized
p̃(wi|D),

I ≈

∑L
i=1

F (wi)p̃(wi|D)/q(wi)∑L
i=1

p̃(wi|D)/q(wi)
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