
Homework # 6
15-496/782: Artificial Neural Networks

Dave Touretzky, Spring 2004

• Due April 28, 2004.

• You do not have to do this homework if you are doing a course project.

• The data file you need is in /afs/cs/academic/class/15782-s04/matlab/digits.
This is binary data, so if you need to FTP it to another machine, be sure to do the transfer
in binary mode.

Overview

In this problem you will experiment with several architectures for recognizing handwritten digits.
There are 10,000 images in the data set, stored in the file t10k.mat. See the README file for
a description of where this data came from. The file contains two variables, Images and Labels.
Images is a 10000 × 28 × 28 matrix of pixel values between 0 and 255. Labels is a 10000 element
vector containing integers between 0 and 9, indicating the correct class of each character.
Warning: this exercise uses a large dataset and requires many iterations for training. It is im-
perative that you write your code in good Matlab style, meaning most of the work is done using
matrix operations, in order to achieve a reasonably fast training time. If you code your solution by
writing lots of nested for loops as you would in C, you may find your simulation runs too slowly
to be usable.

Instructions

• Load the data file t10k.mat and display the first digit by calling show_char(1,Images,Labels).
Browse through the dataset a bit to get a feel for the variations in digit appearance.

• The arrays named Images and Labels are of type uint8, not double, so they require only 1
byte per element instead of the normal 8 bytes. However, it is not possible to do arithmetic
on uint8 values, so it is necessary to convert them to double after loading the file. Also,
the (28×28) patterns must be reshaped into 784-element vectors in order to process multiple
patterns in parallel in the normal way, using matrix multiplication. These functions have
been taken care of for you, in the procedure named setup_problem, which you should call to
initialize the classifiers you write. By setting the values of NTRAIN and NTEST, you’ll be
able to experiment with different size training and test sets.

• The procedure getmeans has been provided to compute the mean and standard devia-
tion of each class for you. Use setup_problem to create training and test sets, then do
show_weights(getmeans(traindata,trainlabels)). Now try setting NTRAIN to a small
value, like 100, call setup_problem again, and see what the means look like.

• For this assignment, use the first 2000 examples in the dataset provided to you as your training
set, and the next 1000 examples in the dataset as your test set.

1. Write a function nearestMean which implements a 1-nearest-neighbor classifier whose search
space consists of the means of the 10 digit classes. Use your training set only to compute



the means. Measure the time it takes to “train” this classifier (compute the means), and the
time it takes to run it on the test set. To time the execution of your code use the matlab
command cpuinfo (type help cpuinfo at the matlab prompt).

Hand in: source listing, training set accuracy, test set accuracy, the training time and the
testing time.

2. Write a DSM (decision surface mapping) classifier for the same problem. Recall that DSM is
a variant of Kohonen’s LVQ; the details of the algorithm are given in the class notes from the
competitive learning lecture. Initialize your network with one prototype for each class. The
initial weight vectors can be computed as the means of all the input patterns of that class,
as in the first part of this homework, but you should normalize both your input patterns and
your weight vectors so that they have unit magnitudes.

DSM can add new prototypes if there is no sufficiently “close” prototype for a given input.
As a criterion for closeness, use the magnitude of the dot product of the input pattern with
the weight vector of the most active unit of the correct class. Set your closeness criterion so
that the algorithm adds a “reasonable” number of prototypes; a value of 0.5 worked well for
me, but feel free to experiment. At each time step your classifier should output a line like the
following:

Epoch 58, Train=94.2, Units= 17, Test=80.2

The value of Units above is the current number of prototype units. Train your network for up
to 300 epochs, you may create no more than 40 prototypes total. Display the weight vectors
for your initial prototypes, and some of the additional prototypes your algorithm created.
Also, at the conclusion of training, display a table of each prototype’s number, its class, and
the number of training patterns it captured.

Many of your automatically-added prototypes will capture only a single pattern; they’re
handling noisy cases in the training set. But a few new prototypes will capture multiple
patterns. Pick one of these and describe what that prototype is looking for.

Measure the time it takes to train this classifier. You will need to also measure the time it
takes to test it once, then multiply it by the number of training epochs and subtract that
from the training time (since you are evaluating the classifier on the test set at every epoch).

Hand in: source listing, sample training run, images of a few of your prototypes, table of
prototype number/class/number of patterns captured, analysis of one learned prototype, the
training time and the testing time.

3. Write a function nearestNeighbor which implements a 1-nearest-neighbor classifier whose
search space consists of the whole training set. Measure the time it takes to “train” this
classifier (hint: zero), and the time it takes to run it on the test set.

Hand in: source listing, test set accuracy (the training set accuracy is 100%), the training
time and the testing time.

4. List (1) the training set accuracy, (2) the test set accuracy, (3) the training time and (4) the
testing time for all three algorithms in a table. Compare their performance. Also compare
their time complexity in training and testing, and relative space requirements, and comment
on any trade-offs that you notice.

Hand in: your analysis.


