
1

Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006

2

LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights.

What about multi-layer networks?



wi

xi

y

wi = −y−dx i

3

With Linear Units, Multiple Layers
Don't Add Anything





U : 2×3 matrix

V : 3×4 matrix

x

Linear operators are closed under composition.
Equivalent to a single layer of weights W=U×V

But with non-linear units, extra layers add
computational power.

y

y = U×V x = U×V 
2×4

x

4

What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable
weights

separating hyperplane

5

2 layers of
trainable
weights

convex polygon region

6

3 layers of
trainable
weights

composition of polygons:
convex regions

7

How Do We Train A
Multi-Layer Network?

Error = d-yy

Error = ???

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.

8

How Do We Train A
Multi-Layer Network?

y

Define sum-squared error:

E =
1
2∑p

dp−yp2

Use gradient descent error minimization:

wij = −
∂E
∂wij

Works if the nonlinear transfer function is differentiable.

9

Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ∑
i

wi x i

E =
1
2∑p

dp
−yp


2 dE

d y
= y−d

∂E
∂wi

=
dE
d y

⋅
∂ y
∂wi

= y−dx i

wi = −
∂E
∂wi

= −y−dx ixi

wi

y

How do we extend this to two layers?

10

Switch to Smooth Nonlinear Units

net j = ∑
i

wij yi

y j = gnet j

Common choices for g:

g x =
1

1e−x

g 'x  = gx ⋅1−gx 

g x=tanhx 
g 'x =1 /cosh2

x

g must be differentiable

11

Gradient Descent with Nonlinear Units

 y=g net=tanh ∑i

wi x i
dE
d y

=y−d,
d y

dnet
=1/cosh2

net ,
∂net
∂wi

=xi

∂E
∂wi

=
dE
d y

⋅
d y

dnet
⋅
∂net
∂wi

= y−d/cosh2

∑i

wi x i⋅x i

tanh(w
i
x

i
)xi

wi y

12

Now We Can Use The Chain Rule

yk

w jk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk

= yk−dk⋅g'netk 

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

=
∂E

∂netk

⋅y j

∂E
∂y j

= ∑
k  ∂E

∂netk

⋅
∂netk

∂ y j


 j =
∂E

∂net j

=
∂E
∂ y j

⋅g'net j

∂E
∂wij

=
∂E

∂net j

⋅y i

13

Weight Updates

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

= k⋅y j

∂E
∂wij

=
∂E

∂net j

⋅
∂net j

∂wij

=  j⋅y i

w jk = −⋅
∂E
∂w jk

wij = −⋅
∂E
∂wij

14

Function Approximation

1 1 1 1

1

y

x

3n+1 free parameters for n hidden units

Bumps from
which we
compose

f(x)

tanhw0w1 x

15

Encoder Problem

Input patterns: 1 bit on out of N.
Output pattern: same as input.

Only 2 hidden units: bottleneck!

Hidden
Unit 2

Hidden
Unit 1

16

5-2-5 Encoder Problem
Training patterns: Hidden code:

A : 0 0 0 0 1 2,0
B: 0 0 0 1 0 0,2
C: 0 0 1 0 0 1,−1
D: 0 1 0 0 0 −1,1
E: 1 0 0 0 0 −1,0

Hidden
Unit 2

Hidden Unit 1

One hidden unit's
linear decision boundary

A

B

CD

E

17

Solving XOR
x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

“OR”

x1

x2

decision boundaries

Two solutions:
x1 x2∨x1 x2

x1∨x2∧x1∧x2

Try the bpxor demo.
 Which solution

does it use?

“AND-NOT”

18

Improving Backprop Performance

● Avoiding local minima

● Keep derivatives from going to zero

● For classifiers, use reachable targets

● Compensate for error attenuation in deep layers

● Compensate for fan-in effects

● Use momentum to speed learning

● Reduce learning rate when weights oscillate

● Use small initial random weights and small initial
learning rate to avoid “herd effect”

● Cross-entropy error measure

19

Avoiding Local Minima

One problem with backprop is that the error surface
is no longer bowl-shaped.

Gradient descent can get trapped in local minima.

In practice, this does not usually prevent learning.

“Noise” can get us out of local minima:

Stochastic update (one pattern at a time).

Add noise to training data, weights, or activations.

Large learning rates can be a source of noise due to
overshooting.

20

Flat Spots

If weights become large, netj becomes large,
derivative of g() goes to zero.

Fahlman's trick: add a small constant to g'(x) to
keep the derivative from going to zero. Typical
value is 0.1.

flat spot

g(x) g'(x)

21

Reachable Targets for Classifiers

Targets of 0 and 1 are unreachable by the logistic or
tanh functions.

Weights get large as the algorithm tries to force
each output unit to reach its asymptotic value.

Trying to get a “correct” output from 0.95 up to 1.0
wastes time and resources that should be
concentrated elsewhere.

Solution: use “reachable targets” of 0.1 and 0.9
instead of 0/1. And don't penalize the network for
overshooting these targets.

22

Error Signal Attenuation

The error signal  gets attenuated as it moves
backward through multiple layers.

So different layers learn at different rates.

Input-to-hidden weights learn more slowly than
hidden-to-output weights.

Solution: have different learning rates  for
different layers.

23

Fan-In Affects Learning Rate

Solution: scale learning rate by fan-in.

20

4

625

One learning step for yk

changes 4 parameters.

One learning step for yj

changes 625 parameters:
big change in netj results!

24

Momentum

Learning is slow if the learning rate is set too low.

Gradient may be steep in some directions but
shallow in others.

Solution: add a momentum term .

Typical value for  is 0.5.

If the direction of the gradient remains constant,
the algorithm will take increasingly large steps.

wijt = −
∂E

∂wijt 
 ⋅wij t−1

25

Momentum Demo

Hertz, Krogh & Palmer figs. 5.10 and 6.3: gradient
descent on a quadratic error surface E (no neural
net) involved:

E = x2  20 y2

∂E
∂x

= 2x ,
∂E
∂y

= 40y

Initial [x , y]=[−1,1] or [1,1]

26

Weights Can Oscillate If
Learning Rate Set Too High

Solution: calculate the cosine of the angle between
successive weight vectors.

If cosine close to 1, things are going well.

If cosine < 0.95, reduce the learning rate.

If cosine < 0, we're oscillating: cancel the
momentum.

cos =
w t  ⋅ w t−1

∥w t ∥⋅∥w t−1∥

w t  = −
∂E
∂w

 ⋅w t−1

27

The “Herd Effect” (Fahlman)

Hidden units all move in the same direction at once,
instead of spreading out to divide and conquer.

Solution: use initial random weights, not too large
(to avoid flat spots), to encourage units to diversify.

Use a small initial learning rate to give units time to
sort out their “specialization” before taking large
steps in weight space.

Add hidden units one at a time. (Cascor algorithm.)

28

Cross-Entropy Error Measure

● Alternative to sum-squared error for binary
outputs; diverges when the network gets an output
completely wrong.

● Can produce faster learning for some types of
problems.

● Can learn some problems where sum-squared
error gets stuck in a local minimum, because it
heavily penalizes “very wrong” outputs.

E = ∑
p [dp log

dp

yp  1−dp
 log

1−dp

1−yp]

29

How Many Layers Do We Need?

Two layers of weights suffice to compute any
“reasonable” function.

But it may require a lot of hidden units!

Why does it work out this way?

Lapedes & Farmer: any reasonable function can be
approximated by a linear combination of localized
“bumps” that are each nonzero over a small region.

These bumps can be constructed by a network with
two layers of weights.

30

Early Application of Backprop:
From DECtalk to NETtalk

DECtalk was a text-to-speech program that drove a
Votrax speech synthesizer board.

Contained 700 rules for English pronunciation, plus
a large dictionary of exceptions.

Developed over several years by a team of linguists
and programmers.

31

NETtalk Learns to Read

In 1987, Sejnowski & Rosenberg made national
news when they used backprop to “teach” a neural
network to “read aloud”.

Training the network with 10,000 weights took 24
hours on a VAX-780 computer. (Today it would take
a few minutes.)

Output: 23 phonetic feature units
plus 3 for stress, syll. boundaries.

Hidden layer: 0-120 units.

Input: 7 letter window containing
 7x29 = 206 units.

32

Why Was NETtalk Interesting?

No explicit rules. No exception dictionary. Trained
in less than a day. Programmers now obsolete!

NETtalk went through “developmental stages” as it
learned to read. Analogous to child development?

CV alternation: “babbling”
word boundaries recognized: “pseudo-words”
many words intelligible
understandable text

 (play audio)

Graceful response to “damage” (some weights
deleted, or noise added.) Rapid recovery with
retraining. Analagous to human stroke patients?

33

Learning Curves for 0-120 Hidden Units

Training set was a 1000 word
dictionary corpus; many
irregular words.

No hiddens: 82% best guess.
120 hiddens: 98% best guess.

Errors in the no “hidden units”
case were often inappropriate.
Hidden units allow for more
contextual influence by
recognizing higher order
features in the input.

34

Test of Generalization Performance

Initial training: 1000 words,
with 120 hidden units.

Testing set was a 20,012
word dictionary.

No additional training:
 77% best guess
 28% perfect match

After 5 training passes:
 90% best guess
 48% perfect match

Regular rule c->[k]
learned earlier than
irregular rule c->[s]

35

Effects of Damage

Std. dev. of the
original, undamaged
weights was 1.2

Random weight
perturbations in
[-.5,+.5] had little
effect.

So each weight must
convey only a few
bits of information.

36

Relearning After Damage

Relearning was about
10 times faster to
achieve similar
performance.

Analogy to rapid
recovery of language
in stroke patients?

37

Was NETtalk Really Competitive?

Couldn't handle words with context-dependent
pronunciations (“lead”) or stresses (“survey”).

Couldn't handle grammatical structure, e.g.,
questions vs. declarative sentences.

Lacked clever contextual tricks, such as:
“he dove” vs. “the dove”
“Dr. Smith” vs. “51 Rodeo Dr.”

But not bad for a seven letter window!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

