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LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights.

What about multi-layer networks?



wi

xi

y

wi = −y−dx i
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With Linear Units, Multiple Layers 
Don't Add Anything





U : 2×3  matrix

V : 3×4  matrix

x

Linear operators are closed under composition.
Equivalent to a single layer of weights W=U×V

But with non-linear units, extra layers add
computational power.

y

y = U×V x = U×V 
2×4

x
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What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable 
weights

separating hyperplane
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2 layers of
trainable 
weights

convex polygon region
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3 layers of
trainable 
weights

composition of polygons:
convex regions
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How Do We Train A
Multi-Layer Network?

Error = d-yy

Error = ???

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.
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How Do We Train A
Multi-Layer Network?

y

Define sum-squared error:

E =
1
2∑p

dp−yp2

Use gradient descent error minimization:

wij = −
∂E
∂wij

Works if the nonlinear transfer function is differentiable.
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Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ∑
i

wi x i

E =
1
2∑p

dp
−yp


2 dE

d y
= y−d

∂E
∂wi

=
dE
d y

⋅
∂ y
∂wi

= y−dx i

wi = −
∂E
∂wi

= −y−dx ixi

wi

y

How do we extend this to two layers?
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Switch to Smooth Nonlinear Units

net j = ∑
i

wij yi

y j = gnet j

Common choices for g:

g x =
1

1e−x

g 'x  = gx ⋅1−gx 

g x=tanhx 
g 'x =1 /cosh2

x

g must be differentiable
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Gradient Descent with Nonlinear Units

               y=g net=tanh ∑i

wi x i
dE
d y

=y−d,      
d y

dnet
=1/cosh2

net ,      
∂net
∂wi

=xi

∂E
∂wi

=
dE
d y

⋅
d y

dnet
⋅
∂net
∂wi

= y−d/cosh2

∑i

wi x i⋅x i

tanh(w
i
x

i
)xi

wi y
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Now We Can Use The Chain Rule

yk

w jk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk

= yk−dk⋅g'netk 

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

=
∂E

∂netk

⋅y j

∂E
∂y j

= ∑
k  ∂E

∂netk

⋅
∂netk

∂ y j


 j =
∂E

∂net j

=
∂E
∂ y j

⋅g'net j

∂E
∂wij

=
∂E

∂net j

⋅y i
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Weight Updates

∂E
∂w jk

=
∂E

∂netk

⋅
∂netk

∂w jk

= k⋅y j

∂E
∂wij

=
∂E

∂net j

⋅
∂net j

∂wij

=  j⋅y i

w jk = −⋅
∂E
∂w jk

wij = −⋅
∂E
∂wij
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Function Approximation

1 1 1 1

1

y

x

3n+1 free parameters for n hidden units

Bumps from
which we 
compose

f(x)

tanhw0w1 x
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Encoder Problem

Input patterns: 1 bit on out of N.
Output pattern: same as input.

Only 2 hidden units:  bottleneck!

Hidden
Unit 2

Hidden
Unit 1
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5-2-5 Encoder Problem
Training patterns:            Hidden code:

A : 0 0 0 0 1 2,0
B: 0 0 0 1 0 0,2
C: 0 0 1 0 0 1,−1
D: 0 1 0 0 0 −1,1
E: 1 0 0 0 0 −1,0

Hidden
Unit 2

Hidden Unit 1

One hidden unit's
linear decision boundary

A

B

CD

E
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Solving XOR
x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

“OR”

x1

x2

decision boundaries

Two solutions:
x1 x2∨x1 x2

x1∨x2∧x1∧x2

Try the bpxor demo. 
 Which solution 

does it use?

“AND-NOT”
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Improving Backprop Performance

● Avoiding local minima

● Keep derivatives from going to zero

● For classifiers, use reachable targets

● Compensate for error attenuation in deep layers

● Compensate for fan-in effects

● Use momentum to speed learning

● Reduce learning rate when weights oscillate

● Use small initial random weights and small initial 
learning rate to avoid “herd effect”

● Cross-entropy error measure
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Avoiding Local Minima

One problem with backprop is that the error surface 
is no longer bowl-shaped.

Gradient descent can get trapped in local minima.

In practice, this does not usually prevent learning.

“Noise” can get us out of local minima:

Stochastic update (one pattern at a time).

Add noise to training data, weights, or activations.

Large learning rates can be a source of noise due to 
overshooting.
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Flat Spots

If weights become large, netj becomes large, 
derivative of g() goes to zero.

Fahlman's trick:  add a small constant to g'(x) to 
keep the derivative from going to zero.  Typical 
value is 0.1.

flat spot

g(x) g'(x)
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Reachable Targets for Classifiers

Targets of 0 and 1 are unreachable by the logistic or 
tanh functions.

Weights get large as the algorithm tries to force 
each output unit to reach its asymptotic value.  

Trying to get a “correct” output from 0.95 up to 1.0 
wastes time and resources that should be 
concentrated elsewhere.

Solution: use “reachable targets” of 0.1 and 0.9 
instead of 0/1.  And don't penalize the network for 
overshooting these targets.
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Error Signal Attenuation

The error signal  gets attenuated as it moves 
backward through multiple layers.

So different layers learn at different rates.

Input-to-hidden weights learn more slowly than 
hidden-to-output weights.

Solution: have different learning rates  for 
different layers.
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Fan-In Affects Learning Rate

Solution: scale learning rate by fan-in.

20

4

625

One learning step for yk

changes 4 parameters.

One learning step for yj

changes 625 parameters:
big change in netj results!
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Momentum

Learning is slow if the learning rate is set too low.

Gradient may be steep in some directions but 
shallow in others.

Solution: add a momentum term .

Typical value for  is 0.5.

If the direction of the gradient remains constant, 
the algorithm will take increasingly large steps.

wijt = −
∂E

∂wijt 
 ⋅wij t−1
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Momentum Demo

Hertz, Krogh & Palmer figs. 5.10 and 6.3: gradient 
descent on a quadratic error surface E (no neural 
net) involved:

E = x2  20 y2

∂E
∂x

= 2x ,    
∂E
∂y

= 40y

Initial [x , y ]=[−1,1]  or [1,1]
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Weights Can Oscillate If
Learning Rate Set Too High

Solution: calculate the cosine of the angle between 
successive weight vectors.

If cosine close to 1, things are going well.

If cosine < 0.95, reduce the learning rate.

If cosine < 0, we're oscillating: cancel the 
momentum.

cos =
w t  ⋅ w t−1

∥w t ∥⋅∥w t−1∥

w t  = −
∂E
∂w

 ⋅w t−1
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The “Herd Effect” (Fahlman)

Hidden units all move in the same direction at once, 
instead of spreading out to divide and conquer.

Solution: use initial random weights,  not too large 
(to avoid flat spots), to encourage  units to diversify.

Use a small initial learning rate to give units time to 
sort out their “specialization” before taking large 
steps in weight space.

Add hidden units one at a time.  (Cascor algorithm.)
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Cross-Entropy Error Measure

● Alternative to sum-squared error for binary 
outputs; diverges when the network gets an output 
completely wrong.

● Can produce faster learning for some types of 
problems.

● Can learn some problems where sum-squared 
error gets stuck in a local minimum, because it 
heavily penalizes “very wrong” outputs.

E = ∑
p [dp log

dp

yp  1−dp
 log

1−dp

1−yp ]
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How Many Layers Do We Need?

Two layers of weights suffice to compute any 
“reasonable” function.

But it may require a lot of hidden units!

Why does it work out this way?

Lapedes & Farmer: any reasonable function can be 
approximated by a linear combination of localized 
“bumps” that are each nonzero over a small region.

These bumps can be constructed by a network with 
two layers of weights.
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Early Application of Backprop:
From DECtalk to NETtalk

DECtalk was a text-to-speech program that drove a 
Votrax speech synthesizer board.

Contained 700 rules for English pronunciation, plus 
a large dictionary of exceptions.

Developed over several years by a team of linguists 
and programmers.
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NETtalk Learns to Read

In 1987, Sejnowski & Rosenberg made national 
news when they used backprop to “teach” a neural 
network to “read aloud”.

Training the network with 10,000 weights took 24 
hours on a VAX-780 computer.  (Today it would take 
a few minutes.)

Output: 23 phonetic feature units 
plus 3 for stress, syll. boundaries.

Hidden layer: 0-120 units.

Input: 7 letter window containing 
    7x29 = 206 units.
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Why Was NETtalk Interesting?

No explicit rules.   No exception dictionary.  Trained 
in less than a day.  Programmers now obsolete!

NETtalk went through “developmental stages” as it 
learned to read.  Analogous to child development?

CV alternation:  “babbling”
word boundaries recognized:  “pseudo-words”
many words intelligible
understandable text

  (play audio)

Graceful response to “damage” (some weights 
deleted, or noise added.)  Rapid recovery with 
retraining.  Analagous to human stroke patients?
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Learning Curves for 0-120 Hidden Units

Training set was a 1000 word 
dictionary corpus; many 
irregular words.

No hiddens: 82% best guess.
120 hiddens: 98% best guess.

Errors in the no “hidden units” 
case were often inappropriate.  
Hidden units allow for more 
contextual influence by 
recognizing higher order 
features in the input.
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Test of Generalization Performance

Initial training: 1000 words, 
with 120 hidden units.

Testing set was a 20,012 
word dictionary.

No additional training:
  77% best guess
  28% perfect match

After 5 training passes:
  90% best guess
  48% perfect match

Regular rule c->[k]
learned earlier than
irregular rule c->[s]
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Effects of Damage

Std. dev. of the 
original, undamaged 
weights was 1.2

Random weight 
perturbations in
[-.5,+.5] had little 
effect.

So each weight must 
convey only a few 
bits of information.
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Relearning After Damage

Relearning was about 
10 times faster to 
achieve similar 
performance.

Analogy to rapid 
recovery of language 
in stroke patients?
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Was NETtalk Really Competitive?

Couldn't handle words with context-dependent 
pronunciations (“lead”) or stresses (“survey”).

Couldn't handle grammatical structure, e.g., 
questions vs. declarative sentences.

Lacked clever contextual tricks, such as:
“he dove” vs. “the dove”
“Dr. Smith” vs. “51 Rodeo Dr.”

But not bad for a seven letter window!
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