
Homework # 1 Answers
15-486/782: Artificial Neural Networks

Dave Touretzky, Fall 2006

Problem 1. Using inequalities expressed in terms of the weights w0, w1, and w2, prove that the
perceptron cannot solve the following classification problem:

Patterns =

[

2 1 3
6 3 9

]

Desired =
[

0 1 1
]

Answer: the proof is similar to the proof that perceptrons cannot do XOR. Assume some set of
weights exists that performs the task correctly. Then:

1. w0 + 2 · w1 + 6 · w2 ≤ 0 pattern 1
2. w0 + w1 + 3 · w2 > 0 pattern 2
3. w0 + 3 · w1 + 9 · w2 > 0 pattern 3
4. 2 · w0 + 4 · w1 + 12 · w2 > 0 (2) + (3)
5. 2 · w0 + 4 · w1 + 12 · w2 ≤ 0 2 × (1)

Lines 4 and 5 are mutually contradictory.

Problem 2. The proof of the perceptron convergence theorem states that if ŵ is a weight vector
that correctly classifies all patterns, and w(τ) is the weight vector at step τ of the algorithm, then
ŵ ·w(τ) increases at each step. Modify the perceptron program to demonstrate this by displaying
the value at each step. Turn in your source code and a sample run.

Answer: We are given the values for slope and yint, which define the decision boundary. For
points in class 1 we have

x2 − slope · x1 − yint > 0

The perceptron computes
w0 + w1x1 + w2x2 > 0

From this last equation we can see that w0 = −yint, w1 = −slope, and w2 = 1. So the correct
weight vector ŵ is given by [-yint -slope 1].

The code on the following page displays both the dot product and the angle in degrees between the
correct weight vector and the current weight estimate. You will note that the dot product increases
with every iteration, as the Perceptron Convergence Theorem requires. The angle does not always
decrease, but the general trend is downward.



% perceptron - Perceptron demo with random training set.

% Calculate and plot the training set.

NPATS = 10+floor(rand(1)*30);

Patterns = rand(2,NPATS)*2-1;

slope = log(rand(1)*10);

yint = rand(1)*2-1;

Desired = Patterns(2,:) - Patterns(1,:)*slope - yint > 0;

%Calculate the correct weight vector

w_hat = [-yint -slope 1];

PlotPats(Patterns,Desired)

Inputs = [ones(1,NPATS); Patterns];

Weights = [0 0 0];

for i = 1:50

% Calculate and display the dot product

dotprod = dot(Weights,w_hat);

angl = acos(dotprod/max(1e-10,(norm(Weights)*norm(w_hat))))/pi*180;

fprintf(’%2d. dot=%7.4f, ang=%7.4f Weights = ’,i,dotprod,angl);

disp(Weights);

Result = (Weights * Inputs) > 0;

if Result == Desired, break, end

Weights = Weights + (Desired-Result) * Inputs’;

PlotBoundary(Weights,i,0)

pause(1)

end

PlotBoundary(Weights,i,1)

>> percepans

1. dot= 0.0000, ang=90.0000 Weights = 0 0 0

2. dot= 6.3510, ang=70.3604 Weights = 8.0000 -1.8914 0.9488

3. dot=17.6129, ang=42.7304 Weights = -6.0000 -8.5063 1.3795

4. dot=18.8872, ang=12.3858 Weights = -1.0000 -7.8111 3.1145

5. dot=20.1615, ang=21.5806 Weights = 4.0000 -7.1158 4.8496

6. dot=25.1815, ang=30.1488 Weights = -5.0000 -11.3636 2.9161

7. dot=26.4557, ang= 5.4394 Weights = 0 -10.6683 4.6512

8. dot=26.6684, ang= 8.4328 Weights = 2.0000 -9.7617 6.3326

9. dot=26.8576, ang= 4.9860 Weights = 1.0000 -10.0758 6.0721

2



Problem 3. Run the bowl demo with learning rates of 0.1, 0.142, and 0.15. Hand in a printout of
each run. What can you say about the model’s behavior at each learning rate?

Answer: See Figure 1 for the results of running bowl with learing rates of 0.01, 0.1, 0.142, and
0.15. With learning rate = 0.01, changes in the weights, at each iteration, are small. Using a
learning rate of 0.1, the convergence is much faster (requiring fewer iterations), but otherwise the
behavior is similar. With a learning rate of 0.142, the sucessive weight vectors oscillate due to an
overcorrecting of the error, but eventually the weights settle to the optimal solution (bottom of
the bowl). The algorithm is unstable with a learning rate of 0.15; each iteration drives the weights
further away from the optimal solution.

Problem 4. Consider the function f(x, y) = exp
(

−(0.6x − 0.7)2 − (y − 0.4)2
)

. (a) Train an LMS
network to approximate this function over the unit square (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). (b) What is the
shape of the approximation function? (c) By looking at the weights of your trained network, you
can see the first degree polynomial that the neural network has devised to approximate f . Write
down this polynomial, and hand it in along with the code you wrote to solve this problem.

Answer: The approximation function is the plane: z = 0.3488x−0.1368y+0.6431. Figure 2 shows
the function f(x, y) and its linear approximation. The code is presented on a subsequent page.

Problem 5. How much information does it take to describe a two-input perceptron? The classical
description uses a vector of three real-valued parameters: ~w = 〈w0, w1, w2〉. But the perceptron’s
decision boundary is a line, which can be uniquely specified with just two parameters, e.g., slope
and intercept.

Jack says: “A perceptron can be described with less information than three real numbers. Here’s
how I would do it: set s0 = w0/w2, and s1 = w1/w2. From the description 〈s0, s1〉, I can construct a
weight vector 〈s0, s1, 1〉 that describes a line with the same slope and intercept as the one described
by ~w. So it should behave the same as ~w for all inputs.”

Jill replies: “A perceptron requires more than that to describe. A line is not an inequality. Consider
the case where w2 is negative. How will that effect the results of your transformation?”

(a) Whose claim is correct, and why? (b) How much information does it really take to correctly
describe a two-input perceptron? (Don’t worry about the case where w2 = 0.)

Answer. Jill’s claim is closer to correct. Jack has the right idea initially when he says that three
real numbers is overkill; the description of the line is overdetermined since w0, w1 and w2 are not
independent. But in settling on just two real numbers he is throwing away too much information,
because the vectors ~w and −~w have the same representation in Jack’s scheme, even though they
produce opposite results. (When w2 is negative, dividing through by w2 requires us to exchange ≤
for > and vice versa, otherwise the resulting perceptron will misclassify every training point.) So
it would appear to take two real numbers plus a sign bit to describe a two-input perceptron: two
real numbers to describe the line, as Jack proposes, and one bit to specify which side of the line is
class 1 and which is class 0.

However, there is an alternative solution which can do the job with two real numbers: the decision
boundary can be described by an angle θ plus a y-intercept. Negating ~w alters θ by 180◦.

3



0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

X to Y Mapping

x value

y 
va

lu
e

−1
0

1 −1 0 1 2 3

0

10

20

30

40

50

w1

Error Surface

w0

T
S

S

(a) Learning rate = 0.01

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

X to Y Mapping

x value

y 
va

lu
e

−1
0

1 −1 0 1 2 3

0

10

20

30

40

50

w1

Error Surface

w0

T
S

S

(b) Learning rate = 0.1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

X to Y Mapping

x value

y 
va

lu
e

−1
0

1 −1 0 1 2 3

0

10

20

30

40

50

w1

Error Surface

w0

T
S

S

(c) Learning rate = 0.142

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

X to Y Mapping

x value

y 
va

lu
e

−1
0

1 −1 0 1 2 3

0

10

20

30

40

50

w1

Error Surface

w0

T
S

S

(d) Learning rate = 0.15

Figure 1: Printouts for each learning rate for Problem 3.

4



0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x

y

z

Figure 2: The function f(x, y) and its linear approximation

5



% Answer to homework 1, problem 4.

[x,y] = meshgrid(0 : 0.1 : 1);

z = exp(-(0.6*x-0.7).^2-(y-0.4).^2);

Patterns = [x(:) y(:)]’;

Desired = z(:)’;

NINPUTS = size(Patterns,1);

NPATS = size(Patterns,2);

NUNITS = size(Desired,1);

Inputs = [ones(1,NPATS); Patterns];

InitWeights = rand(NUNITS,1+NINPUTS) - 0.5;

Weights = InitWeights;

PlotPats3D(Patterns,Desired)

xlabel(’x’), ylabel(’y’), zlabel(’z’)

surf(x,y,z)

axis([0 1 0 1 0 1]), view(110,30)

LearnRate = 0.01;

TSS = Inf;

for epoch = 0:2000,

if rem(epoch,5) == 0

PlotBoundarySurface(Weights)

pause(0.25)

end

NetIn = Weights * Inputs;

Result = NetIn;

Error = Result - Desired;

OldTSS = TSS;

TSS = sum(sum(Error.^2));

fprintf(’%2d. TSS=%8.5f, Weights =’,epoch,TSS);

disp(Weights);

if abs(TSS-OldTSS) < 0.00001

PlotBoundarySurface(Weights)

break;

end;

dW = - (Error * Inputs’);

Weights = Weights + LearnRate * dW;

end

6


