
Derivation of the Backprop Learning Rule

David S. Touretzky
15-486/782: Artificial Neural Networks

1. Unit Activation Equation

netk =
∑

j

yj · wjk (1)

yk = f(netk) (2)

The transfer function f(·) can be any smooth, differentiable, nonlinear function. Originally the
logistic function (1+exp(−x))−1 was used, but many today favor tanh because its range is [−1,+1]
instead of [0, 1], which gives better learning behavior.

2. Error Measure

Error E is summed over all patterns and all output units. The summation over patterns is left
implicit below. dk is the desired output value for unit k on the present pattern, and yk is the actual
output produced by unit k.

E =
1

2

∑

k

(dk − yk)
2 (3)

3. Error of the Output Layer

δk is the gradient of the error with respect to unit k’s input. It is backpropagated to the preceding
layer to calculate δj , and also used to calculate the weight update ∆wjk.

∂E

∂yk

= (yk − dk) (4)

δk =
∂E

∂netk
(5)

=
∂E

∂yk

·

∂yk

∂netk
(6)

= (yk − dk) · f
′(netk) (7)



4. Backpropagated Error for Hidden Units

We back-propagate the error through the wjk connections to calculate the error signal for hidden
unit j.

∂E

∂yj

=
∑

k

(

∂E

∂netk
·

∂netk

∂yj

)

(8)

=
∑

k

(δk · wjk) (9)

δj =
∂E

∂netj
(10)

=
∂E

∂yj

·

∂yj

∂netj
(11)

=
∂E

∂yj

· f ′(netj) (12)

5. Weight Update

We update the weights by the negative of the error gradient (because we want error to decrease),
scaled by a learning rate η.

∂E

∂wjk

=
∂E

∂netk
·

∂netk

∂wjk

(13)

= δk · yj (14)

∂E

∂wij

=
∂E

∂netj
·

∂netj

∂wij

(15)

= δj · yi (16)

∆wjk = −η ·

∂E

∂wjk

(17)

∆wij = −η ·

∂E

∂wij

(18)


