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Introduction: digit
classification
The task: write a program that, given a 28x28 grayscale image of a
digit, outputs the string representation

Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)
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One approach: try to write a program by hand that uses your a priori
knowledge of digits to properly classify the images

Alternative method (machine learning): collect a bunch of images
and their corresponding digits, write a program that uses this data to
build its own method for classifying images

(More precisely, this is a subset of machine learning called
supervised learning)
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A simple
example: predicting
electricity
use

What will peak power consumption be in the Pittsburgh area
tomorrow?

Collect data of past high temperatures and peak demands
High
Temperature
(F) Peak
Demand
(GW)

76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69
87.7 2.50

...
...
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Hypothesize model

Peak demand ≈ θ1 · (High temperature) + θ2

for some numbers θ1 and θ2

Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model
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Equivalent to “drawing a line through the data”
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Observed data
Linear regression prediction
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Notation
Input
features: x (i) ∈ Rn , i = 1, . . . ,m

- E.g.: x (i) ∈ R2 =

[
high temperature for day i

1

]

Output: y(i) ∈ R (regression task)
- E.g.: y(i) ∈ R = {peak demand for day i}

Model
Parameters: θ ∈ Rn

Hypothesis
function: hθ(x ) : Rn → R
- Hypothesis function: hθ(x ) returns a prediction of the output y , e.g.

linear regression

hθ(x ) = xTθ =
n∑

i=1

xiθi
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Loss
functions

How do we measure how “good” a hypothesis is on the training
data?

Typically done by introducing a loss function

ℓ : R× R→ R+

Intuitively, this function outputs a “small” value if hθ(x ) is “close” to
y , a large value if it is “far” from y

E.g., for regression, squared loss

ℓ (hθ(x ), y) = (hθ(x )− y)2

14



The
canonical
machine
learning
problem
Given a collection of input features and outputs (x (i), y(i)),
i = 1, . . . ,m , and a hypothesis function hθ, find parameters θ that
minimize the sum of losses

minimize
θ

m∑
i=1

ℓ
(
hθ(x

(i)), y(i)
)

Virtually all learning algorithms can be described in this form, we just
need to specify three things:

1. The hypothsis class: hθ

2. The loss function: ℓ

3. The algorithm for solving the optimization problem (often
approximately)
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Return
to
power
demand
forecasting
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Observed data
Linear regression prediction

Linear hypothesis class: hθ(x ) = xT θ

Squared loss function: ℓ(hθ(y), y) = (hθ(x )− y)2

Resulting optimization problem

minimize
θ

m∑
i=1

ℓ
(
hθ(x

(i)), y(i)
)
≡ minimize

θ

m∑
i=1

(
x (i)T θ − y(i)

)2
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Linear
regression
Gradient descent to solve optimization problem

minimize
θ

m∑
i=1

(
x (i)T θ − y(i)

)2
Gradient is given by

∇θ

m∑
i=1

(
x (i)Tθ − y(i)

)2
=

m∑
i=1

∇θ

(
x (i)T θ − y(i)

)2
= 2

m∑
i=1

x (i)
(
x (i)Tθ − y(i)

)

Gradient descent, repeat: θ ← θ − α

m∑
i=1

x (i)
(
x (i)T θ − y(i)

)
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In this case, we can also directly solve for ∇θf (θ) = 0

m∑
i=1

x (i)
(
x (i)T θ⋆ − y(i)

)
= 0

=⇒
(

m∑
i=1

x (i)x (i)T

)
θ⋆ =

m∑
i=1

x (i)y(i)

=⇒ θ⋆ =

(
m∑
i=1

x (i)x (i)T

)−1( m∑
i=1

x (i)y(i)

)

Squared loss is one of the few cases that such directly solutions are
possible, usually need to resort to gradient descent or other
methods
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Alternative
loss
functions
Why did we choose the squared loss function

ℓ (hθ(x ), y) = (hθ(x )− y)2?

Some other alternatives
Absolute loss: ℓ(hθ(x ), y) = |hθ(x )− y |

Deadband loss: ℓ(hθ(x ), y) = max{0, |hθ(x )− y | − ϵ}, ϵ ∈ R+

−3 −2 −1 0 1 2 3
0

1
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3

4

hθ(x
i
) − y

i
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Squared Loss
Absolute Loss
Deadband Loss
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For these loss functions, no closed-form expression for θ⋆, but
(sub)gradient descent can still be very effective

E.g., for absolute loss and linear hypothesis class

Repeat : θ ← θ − α
m∑
i=1

x (i)sign
(
x (i)Tθ − y(i)

)

Can also solve for nonsmooth losses using constrained optimization
(and libraries like cvxpy)
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Observed data
Squared loss
Absolute loss
Deadband loss, eps = 0.1
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Probabilistic
interpretation
Suppose that the each output y in our data really is equal to the
hypothesis function for that example hθ(x ), just corrupted by
Gaussian noise ϵ

y = hθ(x ) + ϵ

The probability density of a Gaussian variable given by

p(ϵ) =
1√
2πσ

exp
(
− ϵ2

2σ2

)
Subsituting terms, we can use this expression to write the
probability of y given x (parameterized by θ)

p(y |x ; θ) = 1√
2πσ

exp
(
−(hθ(x )− y)2

2σ2

)
23



Consider the joint probability of all training data (assuming samples
are independent and identically distributed)

p(y(1), . . . , y(m)|x (1), . . . , x (m); θ) =
m∏
i=1

p(y(i)|x (i); θ)

Find the parameters that θ maximize the probability of the data

maximize
θ

m∏
i=1

p(y(i)|x (i); θ) ≡ minimize
θ

−
m∑
i=1

log p(y(i)|x (i); θ)

≡ minimize
θ

m∑
i=1

(
log(
√
2πσ) +

1

2σ2
(hθ(x

(i))− y(i))2
)

≡ minimize
θ

m∑
i=1

(hθ(x
(i))− y(i))2
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This is a procedure known as maximum likelihood estimation, a
common statistical technique

Note that we still just pushed the question of “which loss” to “which
distribution”

- But some distributions, like Gaussian, may have reasonable empirical
or theoretical justifications for certain problems
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Stochastic
gradient
descent
As mentioned, the optimization problems we deal with in machine
learning are of the form

minimize
θ

m∑
i=1

ℓ(hθ(x
(i)), y(i))

Procedurally, gradient descent then takes the form:

function θ = Gradient-Descent({(x (i), y(i))}, hθ, ℓ, α)
Initialize: θ ← 0
Repeat until convergence

g ← 0
For i = 1, . . . ,m :

g ← g +∇θℓ(hθ(x
(i)), y(i))

θ ← θ − αg
return θ
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If the number of samples m is large, computing a single gradient
step is costly

An alternative approach, stochastic gradient descent (SGD), update
the parameters based upon gradient each sample:

function θ = SGD({(x (i), y(i))}, hθ, ℓ, α)
Initialize: θ ← 0
Repeat until convergence

For i = 1, . . . ,m :
θ ← θ − α∇θℓ(hθ(x

(i)), y(i))
return θ

Can be viewed as taking many more steps along noisy estimates of
the gradient, and often converges to a “good” parameter value after
relatively few passes over the data set
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Overfitting

Though they may seem limited, linear hypothesis classes are very
powerful, since the input features can themselves include non-linear
features of data

x (i) ∈ R3 =

 (high temperature for day i)2
high temperature for day i

1


In this case, hθ(x ) = xTθ will be a non-linear function of “original”
data (i.e., predicted peak power is a a non-linear function of high
temperature)

Same solution method as before, gradient descent or (for squared
loss) analytical solution
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Observed Data
d = 2

Linear regression with second degree polynomial features

32



20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k 
H

ou
rly

 D
em

an
d 

(G
W

)

 

 
Observed Data
d = 4

Linear regression with fourth degree polynomial features
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Observed Data
d = 30

Linear regression with 30th degree polynomial features
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Training
and
validation
loss

Fundamental problem: we are looking for parameters that optimize

minimize
θ

m∑
i=1

ℓ(hθ(x
(i)), y(i))

but what we really care about is loss of prediction on new examples
(x ′, y ′) (also called generalization error)

Divide data into training set (used to find parameters for a fixed
hypothesis class hθ ), and validation set (used to choose hypothesis
class)

- (Slightly abusing notation here, we’re going to wrap the “degree” of
the input features into the hypothesis class hθ )
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Training set
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Training set and validation set
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Training set
Validation set
d = 4

Training set and validation set, fourth degree polynomial
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Training set
Validation set
d = 30

Training set and validation set, 30th degree polynomial
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General intuition for training and validation loss
..

Loss

.

Model Complexity

.

Training

.

Validation

We would like to choose hypothesis class that is at the “sweet spot”
of minimizing validation loss
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Training and validation loss on peak demand prediction
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Model
complexity
and
regularization

A number of different ways to control “model complexity”

An obvious one we have just seen: keep the number of features
(number of parameters) low

A less obvious method: keep the magnitude of the parameters small
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Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in θ
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Observed Data
d = 30
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We can directly prevent large entries in θ by penalizing the
magnitude of its entries

Leads to regularized loss minimization problem

minimize
θ

m∑
i=1

ℓ
(
hθ(x

(i)), y(i)
)
+ λ

n∑
i=1

θ2i

where λ ∈ R+ is a regularization parameter that weights the relative
penalties of the size of θ and the loss
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Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 0 (unregularized)
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Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 1
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Evaluating
ML algorithms

The proper way to evaluate an ML algorithm:

1. Break all data into training/testing sets (e.g., 70%/30%)

2. Break training set into training/validation set (e.g., 70%/30% again)

3. Choose hyperparameters using validation set

4. (Optional) Once we have selected hyperparameters, retrain using all
the training set

5. Evaluate performance on the testing set
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Classification
problems

Sometimes we want to predict discrete outputs rather than
continuous

Is the email spam or not? (YES/NO)

What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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Example: classifing
household
appliances
Differentiate between two refrigerators using their power
consumption signatures
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Notation
Input
features: x (i) ∈ Rn , i = 1, . . . ,m

- E.g.: x (i) ∈ R3 = (Duration i ,Power i , 1)

Output: y(i) ∈ {−1,+1} (binary classification task)
- E.g.: y(i) = Is it fridge 1?

Model
Parameters: θ ∈ Rn

Hypothesis
function: hθ(x ) : Rn → R
- Returns continuous prediction of the output y , where the value

indicates how “confident” we are that the example is −1 or +1;
sign(hθ(x )) is the actual binary prediction

- Again, we will focus initially on linear predictors hθ(x ) = xTθ
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Loss
functions

Loss function ℓ : R× {−1,+1} → R+

Do we need a different loss function?

y

−1

+1

x0
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Loss
functions

Loss function ℓ : R× {−1,+1} → R+

Do we need a different loss function?
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The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

ℓ(hθ(x ), y) =

{
1 if y ̸= sign(hθ(x ))
0 otherwise

= 1{y · hθ(x ) ≤ 0}
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Unfortunately, minimizing sum of 0/1 losses leads to a hard
optimization problem

Because of this, a whole range of alternative “approximations” to 0/1
loss are used instead

Hinge loss: ℓ(hθ(x ), y) = max{1− y · hθ(x ), 0}
Squared hinge loss: ℓ(hθ(x ), y) = max{1− y · hθ(x ), 0}2

Logistic loss: ℓ(hθ(x ), y) = log(1 + e−y·hθ(x))

Exponential loss: ℓ(hθ(x ), y) = e−y·hθ(x)
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Common loss functions for classification
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Support
vector
machines

Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

minimize
θ

m∑
i=1

max{1− y(i) · x (i)T θ, 0}+ λ

n∑
i=1

θ2i

Gradient descent update, repeat:

θ := θ − α

(
−

m∑
i=1

y(i)x (i)1{y(i) · x (i)Tθ < 1}+ 2λ

n∑
i=1

θi

)
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Classification boundary of support vector machine
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Logistic
regression

Logistic regression uses logistic loss

minimize
θ

+

m∑
i=1

log(1 + e−y·x (i)T θ) + λ

n∑
i=1

θ2i

Again, gradient descent is a reasonable algorithm (can you derive an
equation for the gradient?)
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Probabilistic
interpretation
of
logistic
regression
Like least squares, logistic regression has a probabilistic
interpretation

For binary classification problem, suppose that

p(y |x ; θ) = 1

1 + exp(−y · hθ(x ))
and for each data point x (i), y(i) is sampled randomly from this
distribution

Then

minimize
θ

−
m∑
i=1

log p(y(i)|x (i); θ)

≡ minimize
θ

log
(
1 + exp

(
−y(i) · hθ(x (i))

))
59



Multi-class
classification

When classification is not binary y ∈ 0, 1, . . . , k (i.e., classifying digit
images), a common approach is “one-vs-all” method

Create a new set of y ’s for the binary classification problem “is the
label of this example equal to j ”

ŷ(i) =

{
1 if y(i) = j
−1 otherwise

and solve for the corresponding parameter θj

For input x , classify according to the hypothesis with the highest
confidence: argmaxj hθj (x )
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Non-linear
classification
Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries
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Classification boundary of support vector machine using non-linear
features 61
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Kernel
methods
Kernel methods are a very popular approach to non-linear
classification, though they are still “linear” in some sense

hθ(x ) =

m∑
i=1

θiK (x , x (i))

where K : Rn × Rn → R is a kernel function that measures the
similarity between x and x (i) (larger values for more similar)

For certain K , can be interpreted as working in a high dimensional
feature space without explicitly forming features

Still linear in θ, can use many of the same algorithms as before

Important: θ ∈ Rm , as many parameters as examples
(nonparametric approach)
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Nearest
neighbor
methods

Predict output based upon closest example in training set

hθ(x ) = y(argmini ∥x−x (i)∥2)

where ∥x∥2 =
∑n

i=1 x
2
i

Can also average over k closest examples: k -nearest neighbor

Requires no separate “training” phase, but (like kernel methods) it is
nonparametric, requires that we keep around all the data
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Neural
networks
Non-linear hypothesis class

hθ(x ) = σ(θT2 σ(ΘT
1 x ))

for a 2-layer network, where θ = {Θ1 ∈ Rn×p , θ2 ∈ Rp and
σ : R→ R is a sigmoid function σ(z ) = 1/(1 + exp(−z )) (applied
elementwise to vector)

x1

x2

xn

...

z1

z2

zp

...
y

Θ1

θ2
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Non-convex optimization, but smooth (gradient and similar methods
can work very well)

Some major recent success stories in speech recognition, image
classification
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Decision
trees
Hypothesis class partitions space into different regions

x2 ≥ 2

x1 ≥ −3

hθ(x) = +1 hθ(x) = −1

hθ(x) = −1

Can also have linear predictors (regression or classification) at the
leaves

Greedy training find nodes that best separate data into distinct
classes
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Ensemble
methods

Combine a number of different hypotheses

hθ(x ) =

k∑
i=1

θisign(hi(x ))

Popular instances

- Random forests: ensemble of decision trees built from different
subsets of training data

- Boosting: iteratively train multiple classifiers/regressors on reweighted
examples based upon performance of the previous hypothesis
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Unsupervised learning
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Unsupervised
learning
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Problem
setting

Input
features: x (i) ∈ Rn , i = 1, . . . ,m

Model
parameters: θ ∈ Rk

How do we specify a hypothesis class or loss function without
outputs?
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One way to interpret many unsupervised learning algorithms is that
they try to “re-create” the input using a limited hypothesis class

Hypothesis
function: hθ : Rn → Rn

- Want hθ(x (i)) ≈ x (i) for all training data

Loss
function: ℓ : Rn × Rn → R+

- E.g., ℓ(hθ(x ), x ) = ∥hθ(x )− x∥2

In order to prevent the trivial solution hθ(x ) = x , we need to restrict
the class of allowable functions hθ
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k-means
Parameters are a set of k “centers” in the data

θ = {µ(1), . . . , µ(k)}, µ(i) ∈ Rk

Hypothesis class picks the closest center

hθ(x ) = µ(argmini ∥x−µ(i)∥2)

With this framework, training looks the same as supervised learning

minimize
θ

m∑
i=1

∥x (i) − hθ(x
(i))∥2

Not a convex problem, but can solve by iteratively finding the closest
µ(i) for each example, then setting µ(i) to be the mean of all
examples assigned to it
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Principal
component
analysis
Parameters are two matrices that reduce the effective dimension of
the data, θ = {Θ1 ∈ Rn×k ,Θ2 ∈ Rk×n} with k < n

Hypothesis class hθ(x ) = Θ1Θ2x

Interpretation: to reconstruct data, Θ2x ∈ Rk needs to preserve
“most” of the information in x (dimensionality reduction)

Minimizing loss

minimize
Θ1,Θ2

m∑
i=1

∥x (i) −Θ1Θ2x
(i)∥22

is not a convex problem, but can be solved (exactly) via an
eigenvalue decomposition
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