Load balancing: power-of-2-choice

When a ball comes in, pick two bins and place the ball in the bin with smaller number of balls.

Turns out with just checking two bins maximum number of balls drops to $O(\log \log n)!$

=> called “power-of-2-choices”

Intuition: Ideas?

Even though max loaded bins has $O(\frac{\log N}{\log \log N})$ balls, most bins have far fewer balls.
Load balancing: power-of-2-choice

Proof (Intuition):

For a ball b, let

height(b) = number of balls in its bin after placing $b

Probability of an incoming ball getting height 3 is at most?

- Q: What needs to happen for this?
- Q: Fraction of bins that can have ≥ 2 balls?
 - at most $\frac{1}{2}$ (since there are only N balls)

$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

So expected number of bins with 3 balls is at most $= \frac{N}{4}$
Load balancing: power-of-2-choice

Proof (Intuition) cont.:
(For a ball b, let height(b) = number of balls in its bin after placing b)

Probability of an incoming ball getting height 4 is at most ?
\(\frac{1}{4} \times \frac{1}{4} = \frac{1}{16} = \frac{1}{2^{4-2}} \)

Probability of an incoming ball getting height h is at most ?
\(\frac{1}{2^{h-2}} \)

Choosing \(h = O(\log \log N) + 2 \) gives probability \(1/N \).
Load balancing: power-of-d-choice

When a ball comes in, **pick d bins** and place the ball in the bin with smallest number of balls.

Theorem:
For any $d \geq 2$ the d-choice process gives a maximum load of

$$\frac{\log \log N}{\log d} + O(1)$$

with probability at least $1 - O(1/N)$.

Observations:
Just looking at two bins gives huge improvement.
Diminishing returns for looking at more than 2 bins.
15-750: Graduate Algorithms

Hashing:
Hash function basics and some constructions
Hash tables
Bloom filters
Load balancing (balls and bins)
Data streaming model
Data streaming model

- Different computational model: elements going past in a “stream”
- Limited storage space: Insufficient to store all the elements
- Example applications:
 - Switch or a router where packets are passing through.
 - Big data

Notation:
- Denote the elements of the stream as $a_1, a_2, ...$
- Each element is from an alphabet U
- Each element takes b bits to represent
 - E.g. 32-bit IP addresses
- The question: what functions of input stream can we compute with what time and space overhead.
Data streaming model

- Functions of interest:
 - Sum of all elements seen (easy)
 - Max of the elements seen (easy)
 - Median (tricky to do with small space)
 - Heavy-hitters, i.e., element(s) that have appeared most often
 - Number of distinct elements seen
Sampling vs. Hashing

Sampling is a natural option (since it helps reduce the amount of data)
But can lead to incorrect answers if not done correctly.

Example from [1]:
Suppose we want to figure out
#“uniques” = elements that occur exactly once.
Consider this sampling approach:
• Sample 10% of the stream by picking each element with probability 0.1.
• Count uniques and scale up the answer by 10

Sampling vs. Hashing

This will lead to incorrect answer:
Suppose stream length is n and n/2 are uniques and n/4 appear twice.

Q: Correct answer is? n/2

In the sampled stream,
Expected length = n/10
#uniques = 0.1*n/2 + n/4 (2*0.1 – 0.1^2)
 (approx.) n/10
So our estimate of #uniques = n (incorrect)

This is in expectation, but will hold with high probability as n gets large (by Chernoff bound)
Sampling vs. Hashing

Q: What was the problem here?
Sampling decision was being made independently on each element of the stream.

Q: What we should have done?
If an element is sampled, all its copies are also sampled.

Q: How can we achieve this via hashing?
Hash the elements to the range \([10]\) and take elements that map to one value, say 0.
If we have at least 1-wise independence then we get \(1/10\) fraction of the stream along with duplicates.
Streams as vectors

Useful abstraction: viewing streams as vectors (in high dimensional space)

Stream at time t as a vector $x^t \in \mathbb{Z}^{\|U\|}$

$$x^t = (x^t_1, x^t_2, \ldots, x^t_{\|U\|})$$

Element $i =$

number of times i^{th} element of U has been seen until time t

If next element is j, then x_j is incremented by 1
Streams as vectors

Leads to an extension of the model where each element of the stream is either
(1) A new element or (2) old element departing (i.e. deletions).

That is, updates to the stream looks like (add e) or (del e).

Assumption: #deletes for any element <= #additions.
=> running count for each element is non-zero

E.g.: U = \{A, B, C\}
add(A), add(B), add(A), del(B), del(A), add(C), \ldots
(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 0, 0), (1, 0, 0), (1, 0, 1), \ldots
Streams as vectors

This vector notation makes it easy to formulate some of the data stream problems:

- **Heavy hitters** = estimate “large” entries in the vector \(x \)
- **Total number of elements seen** = Sum of the elements of \(x \) (easy one)
- **#distinct elements** = #non-zero entries in \(x \)
Many ways to formalize the heavy hitters problem.

ε-heavy-hitters: Indices i such that $x_i > \varepsilon \| x \|_1$

Let us consider a simpler problem first.

Count-Query:
At any time t, given an index i, output the value of x^t_i with an error of at most $\varepsilon \| x^t \|_1$. I.e., output an estimate

$$y_i \in x_i \pm \varepsilon \| x \|_1$$

Q: Given an algorithm for Count-Query, how to get heavy hitters?

To first order: we can look for i’s s.t. $y_i > 0$
(at least a good first step)
Heavy hitters

Q: Would sampling work for Count-query?
No. Example: N copies of A arrives and then they all depart. Then sqrt(N) copies of B arrives.
At the end, heavy hitter = only B
But if we sample the elements with any prob. less that sqrt(N), we don’t expect to see any B.

Next:
Hashing-based solution: Count-Min Sketch
By Cormode and Muthukrishnan.
Hashing-based solution: Count-Min Sketch

A hashing based solution (Step 1)

Let \(h: U \rightarrow [M] \) be a hash function
Let a \(A[1...M] \) be an array capable of storing non-negative integers.

When update \(a_t \) arrives

 If \((a_t == (\text{add}, i)) \)

 then \(A[h(i)]++ \);

else // \(a_t == (\text{del}, i) \)

 \(A[h(i)]-- \);
Hashing-based solution: Count-Min Sketch

Estimate for x_i: $y_i = A[h(i)]$

Q: What does y_i include?
Count for ith element + for all other elements that has a hash collision with it

<Analysis of expected error for universal hash families>

This is in expectation. Now we want to “boost” the probability that we are close to expectation.
Hashing-based solution: Count-Min Sketch

Estimate for x_i^t: $y_i = A[h(i)]$

Q: What does y_i include?
Count for ith element + for all other elements that has a hash collision with it
Hashing-based solution: Count-Min Sketch

A hashing based solution (Step 2)

Amplify the probability that we are close to the expectation:
Independent repetitions!

\(\ell \) hash functions: \(h_1, h_2, \ldots, h_\ell : U \rightarrow [M] \)

\(\ell \) arrays \(A_1, \ldots, A_\ell \)
(one for each hash function)

Same approach as before applied independently on each of the \(\ell \) arrays using the associated hash function.

What should be the new estimate for the count query?