
Application: Perfect hashing
Handling collisions via “two-level hashing”

First level hash table has size O(N)
Each location in the hash table performs a collision-free
hashing

Let C(i) = number of elements mapped to location i in the first
level table

Q: For the second level table, what should the table size at
location i?
C(i)^2 (We know that for this size, we can find a collision-free
hash function)

15-750 Page 16

Application: Perfect hashing
Q: What is the total table space used in the second level?

Q: What is the total table space?
O(N)

Collision-free and O(N) table space!

15-750 Page 17

k-wise independent hash functions
In addition to universality, certain independence properties of
hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is
called k-wise-independent if for any k distinct keys

we have

Case for k=2 is called “pairwise independent.

15-750 Page 18

k-wise independent hash functions
Properties:

Suppose H is a k-wise independent family for k>=2. Then
1. H is also (k-1)-wise indepdent.
2. For any x∈U and a ∈ [M] P[h(x) = a] <= 1/M.
3. H is universal.

Q: Which is stronger: pairwise independent or universal?
Pairwise independent is stronger.
E.g.?
h(x) = Ax construction since P[h(0) = 0] = 1

15-750 Page 19

Some constructions: 2-wise independent
Construction 1 (variant of random matrix multiplication):
Let A be a m x u matrix with uniformly random binary entries.
Let b be a m-bit vector with uniformly random binary entries.

ℎ " := %" + '
where the arithmetic is modulo 2.
Claim. This family of hash functions is 2-wise independent.
Q: How many hash functions are in this family?
2(u+1)m

Q: Number of bits to store?
O(um)

Can we do with fewer bits?

15-750 Page 20

Some constructions: 2-wise independent

Construction 2 (Using fewer bits):
Let A be a m x u matrix.
• Fill the first row and column with uniformly random binary

entries.
• Set Ai,j = Ai-1,j-1

Let b be a m-bit vector with uniformly random binary entries.

ℎ " := %" + '
where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

(try to proof this yourself)

15-750 Page 21

Some constructions: 2-wise independent
Construction 3 (Using finite fields)

Switch to slides for a primer on Groups, fields and finite
fields

We will need this again when we learn about algorithms for
coding.
So we will digress a bit to learn/recap about these number
theory basics.

15-750 Page 22

15-750

23

Groups

A Group (G,*,I) is a set G with operator * such that:
1. Closure. For all a,b Î G, a * b Î G
2. Associativity. For all a,b,c Î G, a*(b*c) = (a*b)*c
3. Identity. There exists I Î G, such that for all

a Î G, a*I=I*a=a
4. Inverse. For every a Î G, there exist a unique

element b Î G, such that a*b=b*a=I
An Abelian or Commutative Group is a Group with the

additional condition
5. Commutativity. For all a,b Î G, a*b=b*a

15-750

Page 24

Examples of groups

Q: Examples?
• Integers, Reals or Rationals with Addition
• The nonzero Reals or Rationals with Multiplication
• Non-singular n x n real matrices with

Matrix Multiplication
• Permutations over n elements with composition

[0®1, 1®2, 2®0] o [0®1, 1®0, 2®2] = [0®0, 1®2, 2®1]

Often we will be concerned with finite groups, I.e.,
ones with a finite number of elements.

15-750

Page 25

Groups based on modular arithmetic
The group of positive integers modulo a prime p

Zp* º {1, 2, 3, …, p-1} *p º multiplication modulo p

Denoted as: (Zp*, *p)

Required properties
1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes. (try to prove this yourself)

Example: Z7*= {1,2,3,4,5,6}
1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6

15-750

Page 26

Fields

A Field is a set of elements F with two binary operators * and +
such that
1. (F, +) is an abelian group
2. (F \ I+, *) is an abelian group

the �multiplicative group�

3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*I+ = I+

Example: The reals and rationals with + and * are fields.

The order (or size) of a field is the number of elements.

A field of finite order is a finite field.

15-750

Page 27

Finite Fields
ℤ" (p prime) with + and * mod p, is a finite field.

1. (ℤ", +) is an abelian group (0 is identity)
2. (ℤ" \ 0, ∗) is an abelian group (1 is identity)
3. Distribution: a*(b+c) = a*b + a*c
4. Cancellation: a*0 = 0

We denote this by $% or GF(p)

Are there other finite fields?
What about ones that fit nicely into bits, bytes and words

(i.e with 2k elements)?

15-750

Page 28

Polynomials over !"
!"[$] = polynomials on x with coefficients in !".

• Example of !&[$]: f(x) = 3x4 + 1x3 + 4x2 + 3
• deg(f(x)) = 4 (the degree of the polynomial)

Operations: (examples over !&[$])
•Addition: (x3 + 4x2 + 3) + (3x2 + 1) = (x3 + 2x2 + 4)
•Multiplication: (x3 + 3) * (3x2 + 1) = 3x5 + x3 + 4x2 + 3
•I+ = 0, I* = 1
•+ and * are associative and commutative
•Multiplication distributes and 0 cancels

Do these polynomials form a field?

15-750

Page 29

Division and Modulus

Long division on polynomials (!"[$]):

44
404
344
010

3041
41

2

2

23

232

+
++
++
+++

++++

+

x
xx
xx
xxx

xxxx

x

)4()1/()34(223 +=+++ xxxx
)44()1mod()34(223 +=+++ xxxx

)34()44()4)(1(232 ++=++++ xxxxx

15-750

Page 30

Polynomials modulo Polynomials

How about making a field of polynomials modulo another
polynomial?
This is analogous to !" (i.e., integers modulo another integer).

Need a polynomial analogous to a prime number…

Definition: An irreducible polynomial is one that is not a
product of two other polynomials both of degree greater than 0.

e.g. (x2 + 2) for !#[%]

15-750

Page 31

Galois Fields
The polynomials !" # mod '(#) where
1. ' # Î ∈ !" # , p(x) is irreducible and
2. deg(p(x)) = n
form a finite field.

Q: How many elements?
Such a field has '. elements.

These fields are called Galois Fields or GF(pn) or !"/
The special case n = 1 reduces to the fields !".
The special case p = 2 is especially useful for us.

15-750

Page 32

GF(2n)

!"# = set of polynomials in !"[%] modulo
irreducible polynomial p % ∈ !" % of degree).

Elements are all polynomials in !"[%] of degree ≤)−1.
Has 2/ elements.
Natural correspondence with bits in 0,1 /.

Elements of !"2 can be represented as a byte, one bit
for each term.

E.g., x6 + x4 + x + 1 = 01010011

15-750

Page 33

GF(2n)

!"# = set of polynomials in !"[%] modulo
irreducible polynomial p % ∈ !" % of degree).

Elements are all polynomials in !"[%] of degree ≤)−1.
Has 2/ elements.
Natural correspondence with bits in 0,1 /.

Addition over !" corresponds to xor.
• Just take the xor of the bit-strings (bytes or words

in practice). This is dirt cheap.

15-750

Page 34

Multiplication over GF(2n)
If n is small enough can use a table of all combinations.
The size will be 2n x 2n (e.g. 64K for !"#)
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an
overflow by 1 term is simply a test and an xor.
e.g. 0111 mod 1001 = 0111

1011 mod 1001 = 1011 xor 1001 = 0010
^ just look at this bit for !"$

15-750

Page 35

Finding inverses over GF(2n)

Again, if n is small just store in a table.
• Table size is just 2n.

For larger n, use Euclid�s algorithm.
• This is again easy to do with shift and xors.

15-750

Page 36

Euclid’s Algorithm
Euclid’s Algorithm:

gcd(a,b) = gcd(b,a mod b)
gcd(a,0) = a

�Extended� Euclid’s algorithm:
• Find x and y such that ax + by = gcd(a,b)
• Can be calculated as a side-effect of Euclid’s

algorithm.
• Note that x and y can be zero or negative.

This allows us to find a-1 mod p, for a Î Zp*

Q: Any idea how?
In particular return x in ax + py = 1.
Similarly can apply to over polynomials

