

Application: Perfect hashing

Handling collisions via “**two-level hashing**”

First level hash table has size $O(N)$

Each location in the hash table performs a collision-free hashing

Let $C(i)$ = number of elements mapped to location i in the first level table

Q: For the second level table, what should the table size at location i ?

$C(i)^2$ (We know that for this size, we can find a collision-free hash function)

Application: Perfect hashing

Q: What is the total table space used in the second level?

$$\sum_{i=1}^M c(i)^2$$

we know $E(c) = \binom{N}{2} \frac{1}{M}$ $\Rightarrow E\left[\sum_{i=1}^M c(i)^2\right] = \binom{N}{2} \frac{1}{M}$

$$E\left[\sum_{i=1}^M c(i)^2 - \sum_{i=1}^M c(i)\right] = O(N) \quad \text{since } M=O(N)$$
$$\Rightarrow E\left[\sum_{i=1}^M c(i)^2\right] = O(N) \quad \text{since } E\left[\sum_{i=1}^M c(i)\right] = O(N)$$

Q: What is the total table space?

$O(N)$

Collision-free and $O(N)$ table space!

k-wise independent hash functions

In addition to universality, certain independence properties of hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to $[M]$ is called k -wise-independent if for any k distinct keys

x_1, x_2, \dots, x_k and any k distinct values $\alpha_1, \alpha_2, \dots, \alpha_k$

we have

$$P(L(x_1) = \alpha_1 \cap L(x_2) = \alpha_2 \cap \dots \cap L(x_k) = \alpha_k) \leq \frac{1}{M^k}$$

Case for $k=2$ is called “pairwise independent.”

k-wise independent hash functions

Properties:

Suppose H is a k -wise independent family for $k \geq 2$. Then

1. H is also $(k-1)$ -wise independent.
2. For any $x \in U$ and $a \in [M]$ $P[h(x) = a] \leq 1/M$.
3. H is universal.

Q: Which is stronger: pairwise independent or universal?

Pairwise independent is stronger.

E.g.?

$h(x) = Ax$ construction since $P[h(0) = 0] = 1$

Some constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):

Let A be a $m \times u$ matrix with uniformly random binary entries.

Let b be a m -bit vector with uniformly random binary entries.

$$h(x) := Ax + b$$

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

Q: How many hash functions are in this family?

$$2^{(u+1)m}$$

Q: Number of bits to store?

$$O(um)$$

Can we do with fewer bits?

Some constructions: 2-wise independent

Construction 2 (Using fewer bits):

Let A be a $m \times u$ matrix.

- Fill the first row and column with uniformly random binary entries.
- Set $A_{i,j} = A_{i-1,j-1}$

Let b be a m -bit vector with uniformly random binary entries.

$$h(x) := Ax + b$$

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.
(try to proof this yourself)

Some constructions: 2-wise independent

Construction 3 (Using finite fields)

Switch to slides for a primer on Groups, fields and finite fields

We will need this again when we learn about algorithms for coding.

So we will digress a bit to learn/recap about these number theory basics.

Groups

A **Group** $(G, *, I)$ is a set G with operator $*$ such that:

1. **Closure.** For all $a, b \in G$, $a * b \in G$
2. **Associativity.** For all $a, b, c \in G$, $a * (b * c) = (a * b) * c$
3. **Identity.** There exists $I \in G$, such that for all $a \in G$, $a * I = I * a = a$
4. **Inverse.** For every $a \in G$, there exist a unique element $b \in G$, such that $a * b = b * a = I$

An **Abelian or Commutative Group** is a Group with the additional condition

5. **Commutativity.** For all $a, b \in G$, $a * b = b * a$

Examples of groups

Q: Examples?

- Integers, Reals or Rational numbers with Addition
- The nonzero Reals or Rational numbers with Multiplication
- Non-singular $n \times n$ real matrices with
Matrix Multiplication
- Permutations over n elements with composition
 $[0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 0] \circ [0 \rightarrow 1, 1 \rightarrow 0, 2 \rightarrow 2] = [0 \rightarrow 0, 1 \rightarrow 2, 2 \rightarrow 1]$

Often we will be concerned with finite groups, i.e.,
ones with a finite number of elements.

Groups based on modular arithmetic

The group of positive integers modulo a prime p

$Z_p^* \equiv \{1, 2, 3, \dots, p-1\}$ $*_p \equiv$ multiplication modulo p

Denoted as: $(Z_p^*, *_p)$

Required properties

1. Closure. Yes.
2. Associativity. Yes.
3. Identity. 1.
4. Inverse. Yes. (try to prove this yourself)

Example: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$

$$1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 6^{-1} = 6$$

Fields

A **Field** is a set of elements F with **two** binary operators $*$ and $+$ such that

1. $(F, +)$ is an **abelian group**
2. $(F \setminus I_+, *)$ is an **abelian group**
the “multiplicative group”
3. **Distribution**: $a^*(b+c) = a^*b + a^*c$
4. **Cancellation**: $a^*I_+ = I_+$

Example: The reals and rationals with $+$ and $*$ are fields.

The **order (or size)** of a field is the number of elements.

A field of finite order is a **finite field**.

Finite Fields

\mathbb{Z}_p (p prime) with $+$ and \ast mod p , is a finite field.

1. $(\mathbb{Z}_p, +)$ is an abelian group (0 is identity)
2. $(\mathbb{Z}_p \setminus 0, \ast)$ is an abelian group (1 is identity)
3. Distribution: $a^*(b+c) = a^*b + a^*c$
4. Cancellation: $a^*0 = 0$

We denote this by \mathbb{F}_p or $GF(p)$

Are there other finite fields?

What about ones that fit nicely into bits, bytes and words
(i.e with 2^k elements)?

Polynomials over \mathbb{F}_p

$\mathbb{F}_p[x]$ = polynomials on x with coefficients in \mathbb{F}_p .

- Example of $\mathbb{F}_5[x]$: $f(x) = 3x^4 + 1x^3 + 4x^2 + 3$
- $\deg(f(x)) = 4$ (the **degree** of the polynomial)

Operations: (examples over $\mathbb{F}_5[x]$)

- Addition: $(x^3 + 4x^2 + 3) + (3x^2 + 1) = (x^3 + 2x^2 + 4)$
- Multiplication: $(x^3 + 3) * (3x^2 + 1) = 3x^5 + x^3 + 4x^2 + 3$
- $I_+ = 0$, $I^* = 1$
- $+$ and $*$ are associative and commutative
- Multiplication distributes and 0 cancels

Do these polynomials form a field?

Division and Modulus

Long division on polynomials ($\mathbb{F}_5[x]$):

$$1x + 4$$

$$x^2 + 1 \quad \overline{)x^3 + 4x^2 + 0x + 3}$$

$$\underline{x^3 + 0x^2 + 1x + 0}$$

$$4x^2 + 4x + 3$$

$$\underline{4x^2 + 0x + 4}$$

$$4x + 4$$

$$(x^3 + 4x^2 + 3)/(x^2 + 1) = (x + 4)$$

$$(x^3 + 4x^2 + 3) \text{mod}(x^2 + 1) = (4x + 4)$$

$$(x^2 + 1)(x + 4) + (4x + 4) = (x^3 + 4x^2 + 3)$$

Polynomials modulo Polynomials

How about making a field of polynomials modulo another polynomial?

This is analogous to \mathbb{F}_p (i.e., integers modulo another integer).

Need a polynomial analogous to a prime number...

Definition: An **irreducible polynomial** is one that is not a product of two other polynomials both of degree greater than 0.

e.g. $(x^2 + 2)$ for $\mathbb{F}_5[x]$

Galois Fields

The polynomials $\mathbb{F}_p[x] \bmod p(x)$ where

1. $p(x) \in \mathbb{F}_p[x]$, $p(x)$ is irreducible and
2. $\deg(p(x)) = n$

form a finite field.

Q: How many elements?

Such a field has p^n elements.

These fields are called **Galois Fields** or **GF(p^n)** or \mathbb{F}_{p^n}

The special case $n = 1$ reduces to the fields \mathbb{F}_p .

The special case $p = 2$ is especially useful for us.

GF(2ⁿ)

\mathbb{F}_{2^n} = set of polynomials in $\mathbb{F}_2[x]$ modulo
irreducible polynomial $p(x) \in \mathbb{F}_2[x]$ of degree n .

Elements are all polynomials in $\mathbb{F}_2[x]$ of degree $\leq n - 1$.

Has 2^n elements.

Natural correspondence with bits in $\{0,1\}^n$.

Elements of \mathbb{F}_{2^8} can be represented as a **byte**, one bit
for each term.

E.g., $x^6 + x^4 + x + 1 = 01010011$

GF(2ⁿ)

\mathbb{F}_{2^n} = set of polynomials in $\mathbb{F}_2[x]$ modulo
irreducible polynomial $p(x) \in \mathbb{F}_2[x]$ of degree n .

Elements are all polynomials in $\mathbb{F}_2[x]$ of degree $\leq n - 1$.

Has 2^n elements.

Natural correspondence with bits in $\{0,1\}^n$.

Addition over \mathbb{F}_2 corresponds to xor.

- Just take the xor of the bit-strings (bytes or words in practice). This is dirt cheap.

Multiplication over GF(2ⁿ)

If n is small enough can use a table of all combinations.

The size will be 2ⁿ x 2ⁿ (e.g. 64K for \mathbb{F}_2^8)

Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an overflow by 1 term is simply a test and an xor.

e.g. $0111 \text{ mod } 1001 = 0111$

$1011 \text{ mod } 1001 = 1011 \text{ xor } 1001 = 0010$

^ just look at this bit for \mathbb{F}_2^3

Finding inverses over GF(2^n)

Again, if n is small just store in a table.

- Table size is just 2^n .

For larger n , use Euclid's algorithm.

- This is again easy to do with shift and xors.

Euclid's Algorithm

Euclid's Algorithm:

$$\gcd(a,b) = \gcd(b, a \bmod b)$$

$$\gcd(a,0) = a$$

“Extended” Euclid's algorithm:

- Find x and y such that $ax + by = \gcd(a,b)$
- Can be calculated as a side-effect of Euclid's algorithm.
- Note that x and y can be zero or negative.

This allows us to find $a^{-1} \bmod p$, for $a \in \mathbb{Z}_p^*$

Q: Any idea how?

In particular return x in $ax + py = 1$.

Similarly can apply to over polynomials