Application: Perfect hashing

Handling collisions via “two-level hashing’
First level hash table has size O(N)

Each location in the hash table performs a collision-free
hashing

Let C(i) = number of elements mapped to location i in the first
level table

Q: For the second level table, what should the table size at
location i?

C()"2 (We know that for this size, we can find a collision-free
hash function)
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Application: Perfect hashing

Q: What is the total table space used in the second level?
A 2
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Q: What is the total table space?
O(N)

Collision-free and O(N) table space!
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k-wise independent hash functions

In addition to universality, certain independence properties of
hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is
called k-wise-independent if for any k distinct keys

o Xo, o X omd any ko dichnk valves ofe, {oc X

we have 3
I\ L = ol <
D (hte)sd (1 R0 A -or AR <) S

Case for k=2 is called “pairwise independent.
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k-wise independent hash functions

Properties:

Suppose H is a k-wise independent family for k>=2. Then
1. His also (k-1)-wise indepdent.

2. For any xeU and a € [M] P[h(x) = a] <= 1/M.

3. His universal.

Q: Which is stronger: pairwise independent or universal?
Pairwise independent is stronger.

E.g.?

h(x) = Ax construction since P[h(0) = 0] = 1

15-750
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Some constructions: 2-wise independent
: on 1 (yariant of rand X riclication)

Let A be a m x u matrix with uniformly random binary entries.
Let b be a m-bit vector with uniformly random binary entries.

h(x):=Ax+b
where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

Q: How many hash functions are in this family?
2(u+1)m

Q: Number of bits to store?
O(um)
Can we do with fewer bits?
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Some constructions: 2-wise independent

Construction 2 (Using fewer bits):
Let A be a m x u matrix.

* Fill the first row and column with uniformly random binary
entries.

o Set Aij= Ai-1-1
Let b be a m-bit vector with uniformly random binary entries.

h(x):=Ax+Db
where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.
(try to proof this yourself)

15-750 Page 21



Some constructions: 2-wise independent
~onsiruction 3 (Using finite fields)

Switch to slides for a primer on Groups, fields and finite
fields

We will need this again when we learn about algorithms for
coding.

So we will digress a bit to learn/recap about these number
theory basics.
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Groups

Aﬁmp (G,*,]) is a set G with operator * such that:
. Closure.Foralla,be G, a*be G

2. Associativity. For all a,b,c € G, a*(b*c) = (a™b)*c
3. ldentity. There exists | € G, such that for all
a e G, a*l=l"a=a
4. Inverse. For every a € G, there exist a unique
element b € G, such that a*b=b*a=/

An Abelian or Commutative Group is a Group with the

additional condition
5. Commutativity. For all a,b € G, a*b=ba
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Examples of groups

Q: Examples?
* |ntegers, Reals or Rationals with Addition
* The nonzero Reals or Rationals with Multiplication

* Non-singular n x n real matrices with
Matrix Multiplication

* Permutations over n elements with composition
[0—1, 152, 250] 0 [0—>1, 150, 252] = [0-0, 152, 2>1]

Often we will be concerned with_finite groups, l.e.,
ones with a finite number of elements.

15-750



Page 25

Groups based on modular arithmetic

The group of positive integers modulo a prime p
Zv ={1,2,3, ..., p-1} *» = multiplication modulo p

Denoted as: (Zp, *p)

Required properties
1. Closure. Yes.
2. Associativity. Yes.

3. ldentity. 1.
4. Inverse. Yes. (try to prove this yourself)

Example: Z7'={1,2,3,4,5,6)
117=1,2"=4,37=5,6"7=6
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Fields

A Eield is a set of elements F with two binary operators * and +
such that

1. (F, +)is an_abelian group
2. (F\l+, *)is an abelian group

the “multiplicative group”
3. Distribution: a*(b+c)=a*b + a*c
4. Cancellation: a*l+= I+

Example: The reals and rationals with + and * are fields.

The order (or size) of a field is the number of elements.
A field of finite order is a finite field.
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Finite Fields

Zp (p prime) with + and * mod p, is a finite field.

1. (Zp, +) is an_abelian group (O is identity)

2. (Zp\0, ) is an gbelian group (1 is identity)
3. Distribution: a*(b+c) =a*b + a*c

4. Cancellation: a*0=0

We denote this by [F,, or GF(p)

Are there other finite fields?
What about ones that fit nicely into bits, bytes and words
(i.e with 2 elements)?
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Polynomials over [,

[F,[x] = polynomials on x with coefficients in [F,,.
« Example of F[x]: f(x)=3x*+ 1x3 +4x? + 3
« deg(f(x)) =4 (the degree of the polynomial)

Operations: (examples over F5[x])

Addition: (x> + 4x? + 3) + (3x2+ 1) = (x> + 2x?% + 4)
Multiplication: (x3 + 3) * (3x?+ 1) =3x°+x3+4x?+ 3
o|+ = O, | =1

*+ and * are associative and commutative
*Multiplication distributes and O cancels

Do these polynomials form a field?
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Division and Modulus

Long division on polynomials (Fz[x]):

x2 +1 )x3+4x2+0x+3

X +0x° +1x+0
4x° +4x+3
4x% +0x + 4

-4x + 4
(x° +4x* +3)/(x* +1) = (x +4) -

(X’ +4x* +3)mod(x* +1) = (4x +4)
(x* +D)(x+4)+(dx+4) = (X +4x° +3)
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Polynomials modulo Polynomials

How about making a field of polynomials modulo another
polynomial?

This is analogous to [, (i.e., integers modulo another integer).

Need a polynomial analogous to a prime number...

Definition: An irreducible polynomial is one that is not a
product of two other polynomials both of degree greater than 0.

e.g. (x* + 2) for Fs[x]
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(Galois Fields

The polynomials  F,[x] modp(x) where
1. p(x)e € F, |x], p(x) is irreducible and

2. deg(p(x))=n
form a finite field.

Q: How many elements?
Such a field has p™ elements.

These fields are called_Galoijs Fields or GE(p") or [Fn

The special case n = 1 reduces to the fields F,,.
The special case p = 2 is especially useful for us.
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GF(2")

[F,n = set of polynomials in IF, [x] modulo
irreducible polynomial p(x) € FF,|x] of degree n.

Elements are all polynomials in F,[x] of degree < n — 1.
Has 2™ elements.
Natural correspondence with bits in {0,1}".

Elements of [F,s can be represented as a byte, one bit
for each term.

E.g., x°+x*+x+1=01010011
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GF(2")

[F,n = set of polynomials in IF, [x] modulo
irreducible polynomial p(x) € FF,|x] of degree n.

Elements are all polynomials in F,[x] of degree < n — 1.
Has 2™ elements.

Natural correspondence with bits in {0,1}".

Addition over F, corresponds to xor.

* Just take the xor of the bit-strings (bytes or words
In practice). This is dirt cheap.
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Multiplication over GF(2")

If n is small enough can use a table of all combinations.
The size will be 2" x 2" (e.g. 64K for F,s)
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an
overflow by 1 term is simply a test and an xor.

eg. 0111 mod 1001 =0111
1011 mod 1001 = 1011 xor 1001 = 0010

" just look at this bit for IF,3
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Finding inverses over GF(2"

Again, if n is small just store in a table.
* Table size is just 2".

For larger n, use Euclid’ s algorithm.
* This is again easy to do with shift and xors.
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Euclid’'s Algorithm

Euclid’s Algorithm:
gcd(a,b) = ged(b,a mod b)
gcd(a,0) =a
“Extended” Euclid’s algorithm:
* Find x and y such that ax + by = gcd(a,b)
« Can be calculated as a side-effect of Euclid’s
algorithm.

* Note that x and y can be zero or negative.

This allows us to find 3" mod p, fora € Zp

Q: Any idea how?
In particular return X inax + py =1.

Similarly can apply to over polynomials
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