Recap: General Model

“Noise” introduced by the channel:
- changed fields in the codeword vector (e.g. a flipped bit).
 - Called **errors**
- missing fields in the codeword vector (e.g. a lost byte).
 - Called **erasures**

How the decoder deals with errors and/or erasures?
- **detection** (only needed for errors)
- **correction**
Recap: Block Codes

- Each message and codeword is of fixed size
- Notation:

 \[k = |m| \]
 length of the message

 \[n = |c| \]
 length of the codeword

 \[\mathcal{C} = \text{“code”} = \text{set of codewords} \]
15-750: Graduate Algorithms

Algorithms for coding
(Error Correcting Codes)

• Real-world application example
 - Cluster storage systems
• Continue with basic concepts
 - minimum distance, systematic property, linear codes, generator and parity-check matrices, Singleton bound
• Reed-Solomon codes
15-750: Graduate Algorithms

Algorithms for coding
(Error Correcting Codes)

• Real-world application example
 - Cluster storage systems

• Continue with basic concepts
 - minimum distance, systematic property, linear codes, generator and parity-check matrices, Singleton bound

• Reed-Solomon codes
Large-scale distributed storage systems

- 1000s of interconnected servers
- 100s of petabytes of data
- Commodity components
- Software issues, power failures, maintenance shutdowns
Large-scale distributed storage systems

1000s of interconnected servers

Unavailabilities are the norm rather than the exception

- Commodity components
- Software issues, power failures, maintenance shutdowns
Facebook analytics cluster in production: unavailability statistics

- Multiple thousands of servers
- Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran, USENIX HotStorage 2013 and ACM SIGCOMM 2014]
Facebook analytics cluster in production: unavailability statistics

- Multiple thousands of servers
- Unavailability event: server unresponsive for > 15 min

Daily server unavailability = 0.5 - 1%

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran, USENIX HotStorage 2013 and ACM SIGCOMM 2014]
Data needs to be stored in a redundant fashion
Traditional approach: Replication

- Storing **multiple copies** of data: Typically 3x-replication

```
  "blocks"   a  b  c  d
            ↓
      a  b  c  d
    a  b  c  d
  a  b  c  d
```

- 3 replicas
- distributed on servers across network
Traditional approach: Replication

- Storing **multiple copies** of data: Typically 3x-replication

“Blocks”:

```
| a | b | c | d |
```

Too expensive for large-scale data

3 replicas:

```
| a | b | c | d |
```

Better alternative: **codes**!
Two data blocks to be stored: \[\text{a} \quad \text{and} \quad \text{b} \]

Tolerate any 2 failures

3-replication

Erasure code

Storage overhead = 3x

“parity blocks”

Storage overhead = 2x
Two data blocks to be stored: \(a \) and \(b \)

Tolerate any 2 failures

\[a+b \]
\[a+2b \]

Much less storage for desired fault tolerance

3-replication
\[
\text{Storage overhead} = 3x
\]

Erasure code
\[
\text{Storage overhead} = 2x
\]

“parity blocks”
Erasure codes: how are they used in distributed storage systems?

Example: $[n=14, k=10]$

10 data blocks

4 parity blocks

distributed to servers
Almost all large-scale storage systems today employ erasure codes

Facebook, Google, Amazon, Microsoft...

“Considering trends in data growth & datacenter hardware, we foresee HDFS erasure coding being an important feature in years to come”

- Cloudera Engineering (September, 2016)
15-750: Graduate Algorithms

Algorithms for coding
(Error Correcting Codes)

- Real-world application example
 - Cluster storage systems
- Continue with basic concepts
 - minimum distance, systematic property, linear codes, generator and parity-check matrices, Singleton bound
- Reed-Solomon codes
Simple Examples

Single parity check code: k=2, n=3

<table>
<thead>
<tr>
<th>Message</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>01</td>
<td>011</td>
</tr>
<tr>
<td>10</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
</tr>
</tbody>
</table>

Consider codewords as vertices on a hypercube.

- codeword
- $n = 3 = \text{dimensionality}$
- $2^n = 8 = \text{number of nodes}$
Simple Examples

Single parity check code: $k=2$, $n=3$

- How many **erasures** can be recovered?
- How many **errors** can be **detected**?
- Up to how many **errors** can be **corrected**?

Erasure correction $= 1$, error detection $= 1$, error correction $= 0$

Cannot even correct single error. Why?

Codewords are too “close by”

Let’s formalize this notion of distance..
Notion of distance between codewords:

\[\Delta(x,y) = \text{number of positions s.t. } x_i \neq y_i \]

minimum distance of a code

\[d = \min\{\Delta(x,y) : x,y \in C, x \neq y\} \]

Code described as: \((n, k, d)_q\)
In general, symbols come from an “alphabet”

Notation:
\[\Sigma = \text{alphabet} \]
\[q = |\Sigma| = \text{alphabet size} \]

Question:
What alphabet did we use so far?

\[C \subseteq \Sigma^n \] (codewords)
Binary Codes

Today we will mostly be considering $\Sigma = \{0, 1\}$ and will sometimes use (n, k, d) as shorthand for $(n, k, d)_2$.
Systematic codes

Definition: A **Systematic code** is one in which the message symbols appear in the codeword in uncoded form.

<table>
<thead>
<tr>
<th>message</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000000</td>
</tr>
<tr>
<td>001</td>
<td>001011</td>
</tr>
<tr>
<td>010</td>
<td>010101</td>
</tr>
<tr>
<td>011</td>
<td>011110</td>
</tr>
<tr>
<td>100</td>
<td>100110</td>
</tr>
<tr>
<td>101</td>
<td>101101</td>
</tr>
<tr>
<td>110</td>
<td>110011</td>
</tr>
<tr>
<td>111</td>
<td>111000</td>
</tr>
</tbody>
</table>
Error Correcting One Bit Messages

How many bits do we need to correct a one bit error on a one bit message?

2 bits
0 -> 00, 1 -> 11
(n=2, k=1, d=2)

3 bits
0 -> 000, 1 -> 111
(n=3, k=1, d=3)

In general need $d \geq 3$ to correct one error. Why? <board>
Role of Minimum Distance

Theorem:
A code C with minimum distance “d” can:
1. detect any \((d-1)\) errors
2. recover any \((d-1)\) erasures
3. correct any \(\left\lfloor \frac{d-1}{2} \right\rfloor\) errors

Intuition: <board>

Stated another way:
For s-bit error detection \(d \geq s + 1\)
For s-bit error correction \(d \geq 2s + 1\)
To correct a erasures and b errors if \(d \geq a + 2b + 1\)
Desired Properties

We look for codes with the following properties:

1. Good rate: k/n should be high (low overhead)
2. Good distance: d should be large (good error correction)
3. Small block size k
4. Fast encoding and decoding
5. Others: want to handle bursty/random errors, local decodability, ...
Q:
If no structure in the code, how would one perform encoding?

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity
Linear Codes

If Σ is a field, then Σ^n is a vector space.

Definition: C is a linear code if it is a linear subspace of Σ^n of dimension k.

This means that there is a set of k independent vectors $v_i \in \Sigma^n$ ($1 \leq i \leq k$) that span the subspace.

I.e., every codeword can be written as:

$$c = a_1 v_1 + a_2 v_2 + \ldots + a_k v_k$$

where $a_i \in \Sigma$

“Basis (or spanning) Vectors”
Some Properties of Linear Codes

1. Linear combination of two codewords is a codeword.

2. Minimum distance \((d)\) = weight of least weight (non-zero) codewords

(Weight of a vector refers to the Hamming weight of a vector, which is equal to the number of non-zero symbols in the vector)

\[
d = \min_{c_i, c_j \in C \atop i \neq j} |c_i - c_j|
\]

\[
= \min_{c \in C \atop c \neq 0} |c|
\]
3. Every linear code has two matrices associated with it.

1. **Generator Matrix:**
 A $k \times n$ matrix G such that: $C = \{ xG \mid x \in \Sigma^k \}$
 Made from stacking the spanning vectors

To continue …