Relation between PCA and SVD

Eigen Value Decomposition of M

$M = X^T X = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T$

- The right singular vectors of X (i.e. columns of V) are the Eigen vectors of M
- Eigen values of M are squared singular values of X

So can use SVD of X for dimension reduction.

Keeping the top-k singular values (and setting rest to 0) is the best rank-k approximation to a matrix under various norms (e.g., spectral, nuclear, forbenius).

[Eckert-Young Theorem]

Finding SVD: via computing eigenvalues and vectors for $X^T X$
Computing eigen values/vectors

How to compute eigen values/vectors of a symmetric matrix M?

Power iteration
- Widely used in practice
- Comes up in other scenarios as well, for example, Pagerank

High level steps:
- Compute the principal eigen vector (to get the first eigen vector)
- Subtract out the principal eigen vector from the matrix
- Iterate again using power iteration to find the principal eigen vector (which will be the second eigen vector of the original matrix)
Computing eigen values/vectors

Power iteration to find the principal eigen value/vector
Assume there is (strict) gap between the top 2 eigen vectors.

Power iteration algorithm:
1. Pick a random vector y_0 (say, each coordinate $\mathcal{N}(0,1)$)
2. $y_{i+1} = \frac{My_i}{||My_i||_2}$ (i.e. rescaling to norm 1)
3. Iterate until convergence to get (approximate) v_1
4. $\lambda_1 = v_1^T M v_1$

Then subtract this out, $M = \lambda_1 v_1 v_1^T$
And use power iteration again.
Intuition behind power iteration

<on board>
PCA Algorithm recap

Preprocess the data

Compute the “covariance matrix” \(M = \sum_{i=1}^{n} x_i x_i^T \)

Find eigen value decomposition of \(M = \Lambda \Lambda^T \)

where \(\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots) \) and \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \)

\(\Lambda = [\Lambda_1, \Lambda_2, \ldots, \Lambda_D] \)

Set the linear transformation matrix as

\(S = \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_k^T \end{bmatrix} \)
When PCA does not work?

- PCA finds a linear approximation. If the low dimensionality of the data is due to non-linear relationships then PCA cannot find it. E.g. \((x, y)\) with \(y = x^2\)

- If normalization is not done incorrectly
15-750: Graduate Algorithms

Algorithms for coding
(Error Correcting Codes)
Welcome to coding. You are in for a fun ride!

What do these sentences say?

Why did this work?

Redundancy!

Codes are clever ways of judiciously adding redundancy to enable recovery under “noise”.
General Model

message (m) → encoder → codeword (c) → noisy channel → codeword’ (c’) → decoder → message or error

“Noise” introduced by the channel:
• changed fields in the codeword vector (e.g. a flipped bit).
 • Called **errors**
• missing fields in the codeword vector (e.g. a lost byte).
 • Called **erasures**

How the decoder deals with errors and/or erasures?
• **detection** (only needed for errors)
• **correction**
Applications

Numerous applications:
Some examples

• **Storage**: Hard disks, cloud storage, NAND flash…
• **Wireless**: Cell phones, wireless links,
• **Satellite and Space**: TV, Mars rover, …

Reed-Solomon codes are by far the most used in practice.

Low density parity check codes (LDPC) codes used for 4G (and 5G) communication and NAND flash
Block Codes

symbols (e.g., bits)

Other kind: convolutional codes (we won’t cover it)…
Block Codes

• Each message and codeword is of fixed size
• Notation:

$$k = |m|$$
length of the message

$$n = |c|$$
length of the codeword

$$C = 	ext{“code”} = \text{set of codewords}$$
Simple Examples

3-Repetition code: $k=1$, $n=3$

<table>
<thead>
<tr>
<th>Message</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>111</td>
</tr>
</tbody>
</table>

- How many **erasures** can be recovered?
- How many **errors** can be **detected**?
- Up to how many **errors** can be **corrected**?

Errors are much harder to deal with than erasures. Why?
Need to find out **where** the errors are!
Simple Examples

Single parity check code: $k=2$, $n=3$

<table>
<thead>
<tr>
<th>Message</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>01</td>
<td>011</td>
</tr>
<tr>
<td>10</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
</tr>
</tbody>
</table>

Consider codewords as vertices on a hypercube.

- $n = 3 =$ dimensionality
- $2^n = 8 =$ number of nodes
Simple Examples

Single parity check code: $k=2$, $n=3$

- How many **erasures** can be recovered?
- How many **errors** can be **detected**?
- Up to how many **errors** can be **corrected**?