Recap

Thm. The max-loaded bin $O \left(\frac{\log N}{\log \log N} \right)$ balls with prob. at least $1 - \frac{1}{N}$.

Proof: High level steps:

1. prob. of any bin receiving $\frac{1}{N}$ (for union bounding over bins)
 - want: $\frac{1}{N}$
2. prs. of there being at least one bin with at least
 - there many balls.
 - want: $\frac{1}{N}$

union bound:
$$p(A \cup B \cup C \ldots) \leq p(A) + p(B) + \ldots$$
Recap

\[p(\text{bin } i \text{ has at least } k \text{ balls}) \leq \binom{N}{k} \left(\frac{1}{N} \right)^k \]

\[= \frac{n!}{(N-k)!k!} \cdot \frac{k!}{N^k} \cdot \frac{1}{N^k} \]

\[\leq \frac{N!}{k!(N-k)!} \cdot \frac{1}{N^k} \]

\[= \frac{1}{k!} \]

Stirling's approx. \[k! \approx \sqrt{2\pi k} \left(\frac{k}{e} \right)^k \]

Choose \(k = O \left(\frac{\log N}{\log \log N} \right) \) give desired result
Clarification:

Sets $S_1, S_2, \ldots, S^{(N)}_{(k)}$

Events $E_1, \ldots, E^{(N)}_{(k)}$

$E_j := \text{Set } S_j \text{ landing in bin } i$

$E = \text{bin } i \text{ getting at least } k \text{ balls}$

$= E_1 \cup E_2 \cup \ldots \cup E^{(N)}_{(k)}$

$P(E) = P(E_1 \cup \ldots \cup E^{(N)}_{(k)})$

$\leq \sum P(E_i)$
power - 2 - choice :

$O \left(\log \log N \right)$

proof (intuition/sketch):

height (b) = num of balls in its bin after placing b

Prob. of an incoming ball getting height 3 is at most?

Fraction of bins that can have ≥ 2 balls?

- at most $\frac{1}{2}$

$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Expected # of bin with 3 balls is at most $= \frac{N}{4}$
Same case for height 4:

\[
\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{2^{4-2}}
\]

Prob. of an incoming ball getting height \(h \) is at most

\[
\frac{1}{h-2}
\]

\[
\frac{2}{2}
\]

Choose \(h = O(\log \log N) + 2 \) \(\Rightarrow \) prob. \(\leq \frac{1}{N} \)
power-of-d-choice

Then, for any \(d \geq 2 \), for d-choice process, max load

\[
\frac{\log \log N}{\log d} = O(1)
\]

with \(p \) at least \(1 - O(\sqrt{n}) \)

Diminishing returns.
Data streaming model:

- Elements coming as a "stream"
- Limited storage (cannot store all elements)

Notation:
- Elements in the stream a_1, a_2, \ldots from alphabet U

Example functions:
1. Sum (easy)
2. Max (easy)
3. Median (tricky)
4. Heavy hitters i.e. 'most appeared'
5. Num. S distinct elements
Natural option: Sampling

Eq.: Unique element

Sample 10% \to\text{count uniques} \to \text{multiply by 10}.

Can lead to incorrect answer

Counterex:
Stream of len. \(n \)

\(\frac{n}{2} \) of unique. \(\frac{n}{4} \) appear twice

10% Sampling:
\[\# \text{uniques} = 0.1 \times \frac{n}{2} + \frac{n}{4} (2 \times 0.1 - 0.1^2) \]

\[\leq \frac{n}{10} \]

So actually \(\# \text{uniques} = \frac{n}{10} = \frac{n}{10} \]
Abstraction:
Stream at time t as a vector $x \in \mathbb{Z}^{t+1}$

$$x = (x_1, x_2, \ldots, x_{t+1})$$

number of time element i of U has been seen until time t

Generalization: $- (\text{add } e) (\text{del } e)$

Ex: $U = \{A, B, c\}$

- add A
- add B
- del A

$(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), \ldots$

Assumption: $- \# \text{del} \leq \# \text{add}$
Heavy hitters:

\[\epsilon \text{-heavy hitters: indices } i \text{ s.t. } x_i > \epsilon \| x \|_1 \]

Count-query:

At time \(t \), for any index \(i \)

output an estimate

\[y_i \in x_i + \epsilon \| x \|_1 \]

For \(\epsilon \)-heavy hitter: can look at \(i \) s.t. \(y_i > 0 \)
Hashing-based Solution: Count-Min Sketch

Step 1: $h: \mathbb{U} \rightarrow [M]$

Array $A[1..M]$ can store non-negative integers

\[\text{add } i:\]

\[A[h(i)] ++\]

else (del i)

\[A[h(i)] --\]

Estimate for x_i: $y_i = A[h(i)]$
\[A[h(i)] = \sum_{j \in \mathcal{U}} x_j^t \cdot 1\{h(i) = h(j)\} \]

\[= x_i^t + \sum_{j \neq i} x_j^t \cdot 1\{h(i) = h(j)\} \]

Error in estimate

Assume \[\mathcal{H}\] universal hash family.

\[p(h(x_i) = h(x_j)) \leq \frac{1}{m} \]
\[E \left[\sum_{j \neq i} x_j^t \mathbf{1} \{ h(j) = h(i) \} \right] = \sum_{j \neq i} x_j^t \Pr(h(j) = h(i)) \leq \sum_{j \neq i} x_j^t \frac{1}{M} \leq \frac{1}{M} \left(\| x_i \|_1 - x_i^t \right) \leq \frac{1}{M} \left(\| x_i \|_1 - \left\| x_i^+ \right\|_1 \right) \leq \frac{1}{M} \left(\| x_i^+ \|_1 \right) \leq \frac{1}{M} \]
Step 2:

Boost success probability

Idea: Repeat & take the best outcome

1. Hash functions h_1, \ldots, h_k
2. Arrays A_1, \ldots, A_k

Same approach as earlier.

$y_i = \min_k A_k[h_k(i)]$

$(\ddagger$: overestimate)