Hashing (Cont. from Slides)

Universal Hash functions:

Due to Carter & Wegman (1979)

Defn: family H maps $U \rightarrow [m]$ is universal if for any $x \neq y \in U$

$$P[h(x) = h(y)] \leq \frac{1}{m}$$

$h \in H$
Construction:

\[|U| = 2^u \]
\[|M| = 2^m \]

Let \(A \in \text{random binary entries}^{m \times u} \)

For any \(x \in U \) (\(u \)-length binary vector)

\[h(x) := A x \mod 2 \]

Q: How many hash functions in the family? \(2^m \)
Thm: \(\ldots \) is universal

Proof: \(h(x) = h(y) \) for \(x \neq y \)

\[A x = A y \]

\[A(x - y) = 0 \]

\[A z = 0 \quad \text{for} \quad z \neq 0 \]

\[\Rightarrow x \neq y \]

We want to show \(P(Az = 0) \leq \frac{1}{M} \) for any \(z \neq 0 \)

Let \(z_i x \neq 0 \quad \exists i \quad \text{such that} \quad z \neq 0 \)

\[A z = \sum A_j z_j \]

\[\uparrow \text{column of } A \]
\[A \mathbf{2} = 0 \]
\[\sum A_j z_j = 0 \]
\[A_{i,x} = -\sum_{j \neq i}^m A_j z_j \]

fixed vector of size \(m \)

\(m \) length binary vector (random)

Prob. of above: \[\left(\frac{1}{2}\right)^m = \frac{1}{2^m} = \frac{1}{m} \]
Application: Hash table

Handling Collisions:
Approach 1: closed addressing
aka separate chaining.

Look up time \(\leq \text{length of the list} \leq \text{number of collisions} \)
\[C_x = \text{num. of elements mapped to the same value where } x \text{ is mapped to.} \]

\[L_x = \text{len. of linked list containing } x \]

\[L_x = C_x + 1 \]

Q: What is \(E[L_x] \)?

\[E[L_x] = 1 + E[C_x] = 1 + \frac{(N-1)}{M} \]

If we choose \(M \geq N \)

\[E[L_x] \leq 2 \]

Look up time constant in expectation.
\[C = \text{total number of collisions} \]

1. \(E[c] \) ?
 \[\leq \binom{N}{2} \frac{1}{M} \]

Suppose \(M \geq N^2 \) \(\implies E[c] \leq \frac{1}{2} \)

Prob. [there exists a collision] = ?

\[\frac{1}{2} \]

Constant time look up (even in worst case).

But we need \(M \geq N^2 \)

Can we get this with \(O(N) \)