Lecture 16: Online Decision Making II

Difficulties not (just) computational
but lack of information

Decision Making in the face of
Uncertainty

\[\text{find } \text{Alg} \text{ s.t. } \left(\max_{I} \frac{\text{cost Alg}(I)}{\text{OPT}(I)} \right) \leq \text{small competitive ratio} \]
Mistake Baylor Model | Experts Problem

$\forall \text{day } t = 1, 2, \ldots, T$

- So listen to n "experts" prediction
- make a prediction α_t
- afterwards, hear the actual outcome O_t

$\text{Mistake}_t = \alpha_t \neq O_t$

Minimize # mistakes
1. Sps a perfect expert.
 \[\Rightarrow \exists \text{ algo that makes } \leq \log_2 n \text{ mistakes} \]
 Predict the majority opinion, discard all incorrect experts.
 Every mistake \(\Rightarrow \) throw away majority of earliest expert
 \[\Rightarrow \leq \log_2 n \text{ mistakes} \]

2. Sps the best expert makes \(m^* \) mistakes
 \[\Rightarrow \exists \text{ algo that makes } \leq (m^* + 1)(\log_2 n) \text{ mistakes}. \]
 \[m^* = \min m_i \]
 \[m_i \leq (\#\text{rnds}) \log_2 n + 1 \]
 \[m^* \geq (\#\text{rnds} - 1) \text{ mistakes} \]
For expert i, $Ago's$ metades $\leq \frac{\text{mut}}{\frac{\log_2 n}{2}} \left(\text{Expert } i \text{'s metades} \right) + \left(\frac{\log_2 n}{\text{necc.}} \right)$.

Then for expert i, $Ago's$ metades $\leq \frac{1}{t} \left(1+\varepsilon \right) \left(\text{Expert } i \text{'s metades} \right) + \left(\frac{\log_2 n}{\varepsilon t} \right)$.
\[w^{(i)}_t = 1 \quad \text{if expert } i \]

for \(t = 1, 2, 3, \ldots, T \ldots \)

1. Predict the weighted majority

 - \(\text{if } \sum_{i} w_t^{(i)} \geq \sum_{i} w_t^{(i)} \text{ predict } (y) \)
 - \(\text{else } \neg y \)

 \[w_{t+1} = \begin{cases}
 w_t^{(i)} & \text{if } (y) \text{ correct} \\
 w_t^{(i)} \cdot \frac{1}{2} & \text{if } \neg y
 \end{cases} \]

 Weighted Majority (WM)

 Multiplicative Weight (MW)

Theorem: Mistakes of WM \(\leq 2.4 \) (Mistakes of i) + \(0(\log n) \)

Proof: "potential" \(\Phi_t = \sum_i w_t^{(i)} \quad \Phi_0 = n \)

- If \(\Phi_t \) make no mistake in \(t \)
 - \(\Phi_t^{\text{mist}} \leq \Phi_t \)
- If \(\Phi_t \) make mistakes \(\Phi_t^{\text{mist}} \leq \frac{3}{4} \Phi_t \)

\[\left(\frac{1}{2} \right)^{\text{mist}} \leq \Phi_t \leq \left(\frac{3}{4} \right)^{\text{mist}} \quad \Phi_0 \leq n \cdot \left(\frac{3}{4} \right)^{\text{mist}} \]

\[\left(\frac{1}{2} \right)^{\text{mist}} \leq n \cdot \left(\frac{3}{4} \right)^{\text{mist}} \Rightarrow \left(\frac{4}{3} \right)^{\text{mist}} \leq n \cdot 2^{\text{mist}} \]

\[\text{take logs } \Rightarrow A^{\text{mist}} \left(\log_2 \frac{1}{3} \right) \leq \log n + \text{mist} \]
1. Basic MW/MW with halving gain.
 \[A_g \leq \frac{2^i}{m_i} + O(\log n) \]

2. \[W^t_i \leftarrow W^t_i (1-\varepsilon) \]

Total loss of three experts \(\leq 1/2 \) mistakes.

Bad news: No deterministic algo can do better than 2 \(m_i \).

PF 2 experts

| Away | YES \| Ayes | NO |
|------|--------|------|----|

outcome \(t \neq \alpha t \) => Also makes \(T \) mistakes.

So, the total loss of three experts \(\leq 1/2 \) mistakes.
Shown: $\text{LMAE} \leq \text{HE MWM}$

\bullet z is made

\bullet z is used

\bullet z is revealed

\bullet z is as predicted

Model (Refined)

$\sum_{i=1}^{n} w_i
= \sum_{i=1}^{n} (1 - E) \cdot p \cdot z$

$w_i = \delta w_i \cdot (1 - E)$

Rand MWM: [Littlestone/Mannila]
Extension 1: Change of Perspective

at each timestep \(t_i \),

- Algorithm produces a vector \(p^t \in \Delta_n \)

- Nature produces a vector \(l^t \in \{0,1\}^n \)

My cost at time \(t \) = \(\langle l^t, p^t \rangle \)
\[
\sum_{i} l_i^t p_i^t
\]

Wait! My loss over time
\[
\sum_{t} \langle l^t, p^t \rangle
\]

\(\leq \) loss of best vector \(q^* \in \Delta_n \)

\[
= \min_{q^* \in \Delta_n} \sum_{t} \langle l^t, q^* \rangle + \frac{\log n}{\varepsilon}
\]
Ex2: Check that linear function model (dot product model) captures experts model.

"Bandits" instead of "experts" / partial info model.

- In previous models, see online loss vector.
- Now suppose I only see the loss value $\langle l_t, p_t \rangle$
- Or in RWM model, pick a random expert, get see its loss.

Good news: Experts algs extend to bandits.

$$H\delta^* = E[\text{loss of alg in bandit setting}] \leq (H\delta) \sum_t \langle l_t, q^* \rangle + \sqrt{\frac{O(1/\epsilon)}{t}}$$

→ explore vs exploit