Lecture 15: \([\text{NP Completeness}] \text{ and } [\text{Approximations}]\)

- P vs NP

- blah "unless \(P = NP \)"

- unless something weird happens.

- NP-complete ("hardest problem in NP")

\(Q \) is NP-complete

\[f: Q \in \text{NP} \]

(2) \(\exists \) another NP-complete problem \(Q' \) s.t.

\[Q \in P \implies Q' \in P \]

(3) 3SAT in NP-complete

if \(Q \in P \) then NP = P
1) Independent Set / Stable Set

- **Input**: graph G, number K
- **Question**: does there exist an Independent Set in G of size $\geq K$?

Claim: Independent Set is NP-complete

1. Independent Set is in NP (✓)
2. "reduce an NP-hard problem to Independent Set"
 - if Independent Set is in P \implies 3SAT is in P
3SAT: \[(x_1 \lor x_3 \lor x_7) \land (x_5 \lor \overline{x_{n-1}} \lor \overline{x_1}) \land \cdots \land (x_1 \lor \overline{x_3} \lor x_5)\]

Want to solve 3SAT using an edge for 1st SET

\[G = \text{diagram}\]

does \(\exists\) an und. set \(S\) on \(K = (\#\text{clauses})\)
Theorem

Vertex Cover is NP-complete

Let \(G = (V, E) \) be a graph. A **vertex cover** \(C \) is a subset of \(V \) such that every edge \((u, v) \) in \(E \) has at least one of its endpoints in \(C \).

(Cover edges using vertices)

Problem

Given \(G \) and an integer \(K \), does \(G \) contain a vertex cover \(C \) such that \(|C| \leq K \)?
1. VC is NP
2. if VC is P ⇒ Ind Set is in P. (⇒ "which would be weird")

Claim: Graph G, S in an Ind set ⇔ V \ S is a vertex cover.

(G, K) in a YES instance of VC
⇔ (G, n-K) in a YES instance of IndSet
Load Balancing

Input: Jobs

"processing" sizes:

\[\begin{array}{cccc}
1 & 2 & \cdots & n \\
P_1 & P_2 & \cdots & P_n \\
\end{array} \]

\[\text{\(n \) machines} \]

Max load over all machines

Minimize
Q: Solve Makespan Minimization fast?
Thm 1: MM is NP-complete

- If $P \in P \Rightarrow MM \in P$

Thm 2: \exists approx to MM

MM instance: $(m, p_1, p_2, \ldots, p_n, K)$
- m: #machines
- p_i: sizes
- K: makespan

Thm:
1. $MM \in NP$ (hint = assignment)
2. If $MM \in P \Rightarrow \text{Partition} \in P$

Partition: given numbers $a_1, a_2, \ldots, a_L \geq 0$

- Does there exist $S \subseteq \{1, 2, \ldots, L\}$
- $\sum_{i \in S} a_i \leq \sum_{i \notin S} a_i$

Thm: $\text{Partition is NP-complete}$

\[m=2 \]
\[P_i = a_i \]
\[K = \frac{\sum ai}{2} \]
Approximation Algorithm for Makespan Min

\[2 \quad 1 \quad 3 \quad 4 \quad 7 \quad 2 \quad 4 \quad 5 \quad 7 \quad m = 3 \]

Greedy:
- Sort jobs in decreasing order of size
- For \(j = 1 \) to \(n \)
 - If \(n \) jobs
 - Put job \(j \) on least loaded machine so far

\[
\begin{array}{c c c c}
7 & 4 & 5 \\
\hline
7 & 4 & 2 \\
\hline
2 & 1 & 3 \\
\end{array}
\]

Makespan of greedy = 16

\[\left\lfloor \frac{35}{3} \right\rfloor \leq \text{OPT} \leq 14 \]
Fact: $\text{Makespan (Greedy)} \leq 2 \cdot \text{OPT}$

Proof: $\text{Greedy} = \text{last job on most loaded } m/C + \text{rest}$

$= P_{\text{last}} + (\text{rest})$

$\leq P_{\text{max}} + \frac{\sum P_j}{m}$

$\leq \text{OPT} + \text{OPT}$

$= 2 \cdot \text{OPT}$ ☺

Approx. Guarantee

Worst case bound on the performance of a heuristic

Greedy

$\leq m$

$P_1 + P_2 + \ldots + P_8$

$\leq \frac{\sum P_8}{2}$
Thm. Greedy $\leq (2 - \frac{1}{m}) \text{OPT}$

Thm. 3 examples where \mathcal{I} is tight

Thm. Sorted Greedy $\leq (1.5) \text{OPT}$ (Easyish)

$\leq (1.5 - \frac{1}{m}) \text{OPT}$ (Easyish)

$\leq (\frac{4}{3} - \frac{1}{m}) \text{OPT}$ (Tidy)

$\leq H \cdot (1 - \frac{1}{m}) + H$