- The network flow model
- Application
 - Algorithms
- Airplane Scheduling
 - Baseball Elimination
 - Project Scheduling
Network Flows

G is a flow network directed.

- u_e capacity
- "upper bound"

$\text{flow: } f : E \rightarrow \mathbb{R}$

$s.t.
\begin{align*}
1 & \quad 0 \leq f(e) \leq u_e \quad \forall e \\
2 & \quad \forall \text{ node } v \neq s, t \quad (\text{conservation of flow})\\
& \quad \sum_{u \in \text{pre-}v} f(uv) = \sum_{w \in \text{post-}v} f(vw)\\
3 & \quad \text{no flow enters } s, \text{ no flow leaves } t \\
\end{align*}$
Theorems: Given any flow network, a max value flow (maxflow) can be found in poly time.

Ford-Fulkerson (not poly time) \rightarrow good for simple cases

[Edmonds-Karp, Dinics, Goldberg-Rao] \rightarrow poly time

Thm 2: If all capacities are integers, then there is a max flow that sends integral integer flow on all edges. $f: E \rightarrow \mathbb{Z}^+$ (and found in poly time)

Algs for Max Flow

Implicit max flow.
Flow.

Flow Decomposition Theorem:
Every flow can be decomposed into m flows along paths.

Moreover, if the flow values are integers, then each path sends integer-valued flow.
Application #1: Jobs & Machines (Bip Matching)

- Each job $j \rightarrow$ 1 machine
- Each machine takes ≤ 1 job

Also:
1. Find a max integer flow in G
2. Paths down
3. Return edges used in this flow

Max Flow F^*

\[\text{Max Match.} \]

\[\cup \quad \cap \quad \lor \quad \land \quad \forall \]

Example where greedy fails (to come).
Airline Schedule:

I. Multiple source cities.

\[\sum b_i = 0 \]
(c) Lower bounds on edge flows.

The upper bound / capacity \(U_e \) is

\[l_e \leq f(e) \leq U_e \]

\[b_i^0 \rightarrow a \]

\[b_j \rightarrow b_i + 3 \]

redue to multiple source sink case
(d) Airplanes (12 of them) | Initial locations, final locations

- 9AM | 10:30 | 12 | 2PM
- PIT | EWR | PHL | JFK

Plane 1 @ PIT

Required

Start | 21 | 6

PIT | 0

EWR | 0

PHL | 0

JFK | 0

-1 | 0 | -1 | -1
Max Flows

- can solve efficiently
- integer max flows (for integer capacities)
- model other extensions (multiple source sinks, lower bounds)

- max flow/min cut duality
- algorithms
Fact 1: A flow \(f \), any s-t cut \(C \)

\[\text{value}(f) \leq \text{value}(C) \]

Fact 2: [MaxFlow/MinCut theorem]

For flow \(f^* \), cut \(C^* \)

\[\text{value}(f^*) = \text{value}(C^*) \]