
Carnegie Mellon

Lecture 14

Dynamic Code Optimization

I. Motivation & Background

II. Overview

III. Partial Method Compilation

IV. Partial Dead Code Elimination

V. Partial Escape Analysis

Phillip B. Gibbons 15-745: Dynamic Code Optimization 1

Stadler et al., “Partial Escape Analysis and Scalar Replacement for Java,” CGO'14

John Whaley, “Partial Method Compilation Using Dynamic Profile Information”,  OOPSLA’01



Carnegie Mellon

I. Beyond Static Compilation

1) Profile-based Compiler:  high-level → binary, static

– Uses (dynamic=runtime) information collected in profiling passes

2) Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level → binary, dynamic

– interpreter/compiler hybrid

– supports cross-module optimization

– can specialize program using runtime information

• without separate profiling passes

215-745: Dynamic Code Optimization



Carnegie Mellon

void foo(int A, int B) {

…

while (…) {

if (A > B)

*p = 0;

C = val[i] + D;

E += C – B;

…

}

}

• Understanding common dynamic behaviors may help guide optimizations

– e.g., control flow, data dependences, input values

• Profile-based compile-time optimizations

– e.g., speculative scheduling, cache optimizations, code specialization

1) Dynamic Profiling Can Improve Compile-time Optimizations

15-745: Dynamic Code Optimization 3

How often is this condition true?

How often does *p == val[i]?

What are typical values of A, B?

Is this loop invariant?



Carnegie Mellon

Profile-Based Compile-time Optimization

• Collecting control-flow profiles is relatively inexpensive

– profiling data dependences, data values, etc., is more costly

• Limitations of this approach?

– e.g., need to get typical inputs

4

prog1.c

compiler

runme.exe

1. Compile statically

runme.exe
(instrumented)

input1

execution 
profile

2. Collect profile 
(using typical inputs)

prog1.c

compiler

runme_v2.exe

execution 
profile

3. Re-compile, using profile

15-745: Dynamic Code Optimization



Carnegie Mellon

Instrumenting Executable Binaries

1. The compiler could insert it directly

2. A binary instrumentation tool could modify the executable directly

– that way, we don’t need to modify the compiler

– compilers that target the same architecture (e.g., x86) can use the same tool

5

prog1.c

compiler

runme.exe

1. Compile statically

runme.exe
(instrumented)

input1

execution 
profile

2. Collect profile 
(using typical inputs)

How to perform the 
instrumentation?

binary 
instrumentation 

tool

15-745: Dynamic Code Optimization



Carnegie Mellon

Binary Instrumentation/Optimization Tools

• Unlike typical compilation, the input is a binary (not source code)

• One option: static binary-to-binary rewriting

• Challenges (with the static approach):

– what about dynamically-linked shared libraries?

– if our goal is optimization, are we likely to make the code faster?

• a compiler already tried its best, and it had source code (we don’t)

– if we are adding instrumentation code, what about time/space overheads?

• instrumented code might be slow & bloated if we aren’t careful

• optimization may be needed just to keep these overheads under control

• Bottom line: the purely static approach to binary rewriting is rarely used

6

runme.exe runme_modified.exetool

15-745: Dynamic Code Optimization



Carnegie Mellon

2) (Pure) Interpreter

• One approach to dynamic code execution/analysis is an interpreter

– basic idea: a software loop that grabs, decodes, and emulates each instruction

• Advantages:

– also works for dynamic programming languages (e.g., Java)

– easy to change the way we execute code on-the-fly (SW controls everything)

• Disadvantages:

– runtime overhead!

• each dynamic instruction is emulated individually by software

7

while (stillExecuting) {

inst = readInst(PC);

instInfo = decodeInst(inst);

switch (instInfo.opType) {

case binaryArithmetic: …

case memoryLoad: …

…

}

PC = nextPC(PC,instInfo);

}

15-745: Dynamic Code Optimization



Carnegie Mellon

A Sweet Spot?

• Is there a way that we can combine:

– the flexibility of an interpreter (analyzing and changing code dynamically); and

– the performance of direct hardware execution?

• Key insights:

– increase the granularity of interpretation

• instructions→ chunks of code (e.g., procedures, basic blocks)

– dynamically compile these chunks into directly-executed optimized code

• store these compiled chunks in a software code cache

• jump in and out of these cached chunks when appropriate

• these cached code chunks can be updated!

– invest more time optimizing code chunks that are clearly hot/important

• easy to instrument the code, since already rewriting it

• must balance (dynamic) compilation time with likely benefits

815-745: Dynamic Code Optimization



Carnegie Mellon

3) Dynamic Compiler

• This general approach is widely used:

– Java virtual machines

– dynamic binary instrumentation tools (Valgrind, Pin, Dynamo Rio)

– hardware virtualization

• In the simple dynamic compiler shown above, all code is compiled

– In practice, can choose to compile only when expected benefits exceed costs

9

while (stillExecuting) {

if (!codeCompiledAlready(PC)) {

compileChunkAndInsertInCache(PC);

}

jumpIntoCodeCache(PC);  

// compiled chunk returns here when finished

PC = getNextPC(…);

}

15-745: Dynamic Code Optimization



Carnegie Mellon

Components in a Typical Just-In-Time (JIT) Compiler

• Cached chunks of compiled code run at hardware speed

– returns control to “interpreter” loop when chunk is finished

• Dynamic optimizer uses profiling information to guide code optimization

– as code becomes hotter, more aggressive optimization is justified

→replace the old compiled code chunk with a faster version

• Cache manager typically discards cold chunks (but could store in secondary structure)

10

“Interpreter”
Control Loop

Input
Program

Compiled Code 
Cache (Chunks)

Dynamic Code
Optimizer

Cache Manager
(Eviction Policy)

Profiling 
Information

15-745: Dynamic Code Optimization



Carnegie Mellon

II. Overview of Dynamic Compilation / Code Optimization

• Interpretation/Compilation/Optimization policy decisions

– Choosing what and how to compile, and how much to optimize

• Collecting runtime information

– Instrumentation

– Sampling

• Optimizations exploiting runtime information

– Focus on frequently-executed code paths

1115-745: Dynamic Code Optimization



Carnegie Mellon

Dynamic Compilation Policy

• ∆Ttotal = Tcompile – (nexecutions * Timprovement)

– If ∆Ttotal is negative, our compilation policy decision was effective.

12

• We can try to:

– Reduce Tcompile (faster compile times)

– Increase Timprovement (generate better code: but at cost of increasing Tcompile)

– Focus on large nexecutions (compile/optimize hot spots)

• 80/20 rule: Pareto Principle

– 20% of the work for 80% of the advantage

15-745: Dynamic Code Optimization



Carnegie Mellon

Latency vs. Throughput

• Tradeoff: startup speed vs. execution performance

13

Startup speed Execution performance

Interpreter Best Poor

‘Quick’ compiler Fair Fair

Optimizing compiler Poor Best

15-745: Dynamic Code Optimization



Carnegie Mellon

Multi-Stage Dynamic Compilation System

14

interpreted

code

fully optimized

code

when execution count = t2  (e.g. 25,000)

Stage 1:

Stage 2:

Stage 3:

compiled

code

when execution count = t1  (e.g. 2000)

Execution count is the sum of
method invocations & back edges executed

15-745: Dynamic Code Optimization



Carnegie Mellon

Granularity of Compilation: Per Method?

• Methods can be large, especially after inlining

– Cutting/avoiding inlining too much hurts performance considerably

• Compilation time is proportional to the amount of code being compiled

– Moreover, many optimizations are not linear

• Even “hot” methods typically contain some code that is rarely/never executed

1515-745: Dynamic Code Optimization



Carnegie Mellon

Example: SpecJVM98 db

16

void read_db(String fn) {

int n = 0, act = 0; int b; byte buffer[] = null;

try {

FileInputStream sif = new FileInputStream(fn);

n = sif.getContentLength();

buffer = new byte[n];

while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;

}

sif.close();

if (act != n) {

/* lots of error handling code, rare */

}

} catch (IOException ioe) {

/* lots of error handling code, rare */

}

}

Hot

loop

15-745: Dynamic Code Optimization



Carnegie Mellon

Example: SpecJVM98 db

17

void read_db(String fn) {

int n = 0, act = 0; int b; byte buffer[] = null;

try {

FileInputStream sif = new FileInputStream(fn);

n = sif.getContentLength();

buffer = new byte[n];

while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;

}

sif.close();

if (act != n) {

/* lots of error handling code, rare */

}

} catch (IOException ioe) {

/* lots of error handling code, rare */

}

}

Lots of

rare code!

15-745: Dynamic Code Optimization



Carnegie Mellon

Optimize hot “code paths”, not entire methods

• Optimize only the most frequently executed 
code paths within a method

– Simple technique: 

• Track execution counts of basic blocks 
in Stages 1 & 2

• Any basic block executing in Stage 2
is considered to be not rare

• Beneficial secondary effect of improving 
optimization opportunities on the common paths

• No need to profile any basic block executing 
in Stage 3

– Already fully optimized

1815-745: Dynamic Code Optimization

interpreted

code

fully optimized

code

Stage 1:

Stage 2:

Stage 3:

compiled

code



Carnegie Mellon

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 10 100 500 1000 2000 5000

Linpack

JavaCUP

JavaLEX

SwingSet

check

compress

jess

db

javac

mpegaud

mtrt

jack

19

execution threshold

%
 o

f 
b

as
ic

 b
lo

ck
s 

co
m

p
ile

d

15-745: Dynamic Code Optimization

% of Basic Blocks in Methods that are Executed > Threshold Times
(hence would get compiled under per-method strategy)



Carnegie Mellon

% of Basic Blocks that are Executed > Threshold Times
(hence get compiled under per-basic-block strategy)

20

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 10 100 500 1000 2000 5000

Linpack

JavaCUP

JavaLEX

SwingSet

check

compress

jess

db

javac

mpegaud

mtrt

jack

execution threshold

%
 o

f 
b

as
ic

 b
lo

ck
s 

ex
ec

u
te

d

15-745: Dynamic Code Optimization



Carnegie Mellon

Dynamic Code Transformations

• Compiling partial methods

• Partial dead code elimination

• Partial escape analysis

2115-745: Dynamic Code Optimization



Carnegie Mellon

III. Partial Method Compilation

1. Based on profile data, determine the set of rare blocks

– Use code coverage information from the first compiled version

2215-745: Dynamic Code Optimization

Goal: Program runs correctly with white blocks 
compiled and blue blocks interpreted

What are the challenges?
• How to transition from white to blue
• How to transition from blue to white
• How to compile/optimize ignoring blue



Carnegie Mellon

Partial Method Compilation

2. Perform live variable analysis

– Determine the set of live variables at rare block entry points

23

live: x,y,z

15-745: Dynamic Code Optimization



Carnegie Mellon

Partial Method Compilation

3. Redirect the control flow edges that targeted rare blocks, 
and remove  the rare blocks

24

to interpreter…

15-745: Dynamic Code Optimization

Once branch to 
interpreter, never 
come back to 
compiled (no blue-
to-white transitions)

Deoptimization



Carnegie Mellon

Partial Method Compilation

4. Perform compilation normally

– Analyses treat the interpreter transfer point as an unanalyzable method call

2515-745: Dynamic Code Optimization

Deoptimization



Carnegie Mellon

Partial Method Compilation

5. Record a map for each interpreter transfer point

– In code generation, generate a map that specifies the location, in registers 
or memory, of each of the live variables

– Maps are typically < 100 bytes

– Used to reconstruct the interpreter state

26

x: sp - 4

y: r1

z: sp - 8

live: x,y,z

15-745: Dynamic Code Optimization

Deoptimization



Carnegie Mellon

IV. Partial Dead Code Elimination

• Move computation that is only live on a rare path into the rare block, saving 
computation in the common case

2715-745: Dynamic Code Optimization



Carnegie Mellon

Partial Dead Code Example

28

x = 0;

if (rare branch 1){

...

z = x + y;

...

}

if (rare branch 2){

...

a = x + z;

...

}

if (rare branch 1) {

x = 0;

...

z = x + y;

...

}

if (rare branch 2) {

x = 0;

...

a = x + z;

...

}

15-745: Dynamic Code Optimization

May in fact undo an optimization done by the compiler (that did not know branch was rare) 



Carnegie Mellon

V. Escape Analysis

• Escape analysis finds objects that do not escape a method or a thread

– “Captured” by method: 

• can be allocated on the stack or in registers, avoiding heap allocation

• scalar replacement: replace the object’s fields with local variables

– “Captured” by thread: 

• can avoid synchronization operations

• All Java objects are normally heap allocated, so this is a big win

2915-745: Dynamic Code Optimization



Carnegie Mellon

Partial Escape Analysis

• Stack allocate objects that don’t escape in the common (i.e., non-rare) blocks

• Eliminate synchronization on objects that don’t escape the common blocks

• If a branch to a rare block is taken:

– Copy stack-allocated objects to the heap and update pointers

– Reapply eliminated synchronizations

3015-745: Dynamic Code Optimization



Carnegie Mellon

Partial Escape Analysis Example

15-745: Dynamic Compilation 31

Allocated object escapes into
global variable cacheKey



Carnegie Mellon

Partial Escape Analysis Example (cont.)

15-745: Dynamic Compilation 32

Considering only the if branch, the allocated object does NOT escape
• In the if branch, avoid the allocation and remove the synchronization



Carnegie Mellon

Oracle HotSpot JVM and Graal Dynamic Compiler

3315-745: Dynamic Code Optimization

Partial Escape Analysis implemented as an optimization on the Graal Compiler IR



Carnegie Mellon

Benefits from Partial Escape Analysis

3415-745: Dynamic Code Optimization



Carnegie Mellon

Dynamic Optimizations in HotSpot JVM

3515-745: Dynamic Code Optimization



Carnegie Mellon

HotSpot JVM and Graal Dynamic Compiler

3615-745: Dynamic Code Optimization



Carnegie Mellon

Summary: Beyond Static Compilation

1) Profile-based Compiler:  high-level → binary, static

– Uses (dynamic=runtime) information collected in profiling passes

2) Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level → binary, dynamic

– interpreter/compiler hybrid

– supports cross-module optimization

– can specialize program using runtime information

• without separate profiling passes

• for what’s hot on this particular run

3715-745: Dynamic Code Optimization



Carnegie Mellon

Today’s Class: Dynamic Code Optimization

3815-745: Dynamic Code Optimization

Wednesday’s Class

• Memory Hierarchy Optimizations
– ALSU 7.4.2-7.4.3, 11.2-11.5

I. Motivation & Background

II. Overview

III. Partial Method Compilation

IV. Partial Dead Code Elimination

V. Partial Escape Analysis


