
Carnegie Mellon

Lecture 14

Dynamic Code Optimization

I. Motivation & Background

II. Overview

III. Partial Method Compilation

IV. Partial Dead Code Elimination

V. Partial Escape Analysis

Phillip B. Gibbons 15-745: Dynamic Code Optimization 1

Stadler et al., “Partial Escape Analysis and Scalar Replacement for Java,” CGO'14

John Whaley, “Partial Method Compilation Using Dynamic Profile Information”,  OOPSLA’01



Carnegie Mellon

I. Beyond Static Compilation

1) Profile-based Compiler:  high-level → binary, static

– Uses (dynamic=runtime) information collected in profiling passes

2) Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level → binary, dynamic

– interpreter/compiler hybrid

– supports cross-module optimization

– can specialize program using runtime information

• without separate profiling passes
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void foo(int A, int B) {

…

while (…) {

if (A > B)

*p = 0;

C = val[i] + D;

E += C – B;

…

}

}

• Understanding common dynamic behaviors may help guide optimizations

– e.g., control flow, data dependences, input values

• Profile-based compile-time optimizations

– e.g., speculative scheduling, cache optimizations, code specialization

1) Dynamic Profiling Can Improve Compile-time Optimizations
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How often is this condition true?

How often does *p == val[i]?

What are typical values of A, B?

Is this loop invariant?
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Profile-Based Compile-time Optimization

• Collecting control-flow profiles is relatively inexpensive

– profiling data dependences, data values, etc., is more costly

• Limitations of this approach?

– e.g., need to get typical inputs
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Instrumenting Executable Binaries

1. The compiler could insert it directly

2. A binary instrumentation tool could modify the executable directly

– that way, we don’t need to modify the compiler

– compilers that target the same architecture (e.g., x86) can use the same tool
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Binary Instrumentation/Optimization Tools

• Unlike typical compilation, the input is a binary (not source code)

• One option: static binary-to-binary rewriting

• Challenges (with the static approach):

– what about dynamically-linked shared libraries?

– if our goal is optimization, are we likely to make the code faster?

• a compiler already tried its best, and it had source code (we don’t)

– if we are adding instrumentation code, what about time/space overheads?

• instrumented code might be slow & bloated if we aren’t careful

• optimization may be needed just to keep these overheads under control

• Bottom line: the purely static approach to binary rewriting is rarely used
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runme.exe runme_modified.exetool
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2) (Pure) Interpreter

• One approach to dynamic code execution/analysis is an interpreter

– basic idea: a software loop that grabs, decodes, and emulates each instruction

• Advantages:

– also works for dynamic programming languages (e.g., Java)

– easy to change the way we execute code on-the-fly (SW controls everything)

• Disadvantages:

– runtime overhead!

• each dynamic instruction is emulated individually by software
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while (stillExecuting) {

inst = readInst(PC);

instInfo = decodeInst(inst);

switch (instInfo.opType) {

case binaryArithmetic: …

case memoryLoad: …

…

}

PC = nextPC(PC,instInfo);

}
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A Sweet Spot?

• Is there a way that we can combine:

– the flexibility of an interpreter (analyzing and changing code dynamically); and

– the performance of direct hardware execution?

• Key insights:

– increase the granularity of interpretation

• instructions→ chunks of code (e.g., procedures, basic blocks)

– dynamically compile these chunks into directly-executed optimized code

• store these compiled chunks in a software code cache

• jump in and out of these cached chunks when appropriate

• these cached code chunks can be updated!

– invest more time optimizing code chunks that are clearly hot/important

• easy to instrument the code, since already rewriting it

• must balance (dynamic) compilation time with likely benefits
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3) Dynamic Compiler

• This general approach is widely used:

– Java virtual machines

– dynamic binary instrumentation tools (Valgrind, Pin, Dynamo Rio)

– hardware virtualization

• In the simple dynamic compiler shown above, all code is compiled

– In practice, can choose to compile only when expected benefits exceed costs
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while (stillExecuting) {

if (!codeCompiledAlready(PC)) {

compileChunkAndInsertInCache(PC);

}

jumpIntoCodeCache(PC);  

// compiled chunk returns here when finished

PC = getNextPC(…);

}
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Components in a Typical Just-In-Time (JIT) Compiler

• Cached chunks of compiled code run at hardware speed

– returns control to “interpreter” loop when chunk is finished

• Dynamic optimizer uses profiling information to guide code optimization

– as code becomes hotter, more aggressive optimization is justified

→replace the old compiled code chunk with a faster version

• Cache manager typically discards cold chunks (but could store in secondary structure)
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II. Overview of Dynamic Compilation / Code Optimization

• Interpretation/Compilation/Optimization policy decisions

– Choosing what and how to compile, and how much to optimize

• Collecting runtime information

– Instrumentation

– Sampling

• Optimizations exploiting runtime information

– Focus on frequently-executed code paths
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Dynamic Compilation Policy

• ∆Ttotal = Tcompile – (nexecutions * Timprovement)

– If ∆Ttotal is negative, our compilation policy decision was effective.
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• We can try to:

– Reduce Tcompile (faster compile times)

– Increase Timprovement (generate better code: but at cost of increasing Tcompile)

– Focus on large nexecutions (compile/optimize hot spots)

• 80/20 rule: Pareto Principle

– 20% of the work for 80% of the advantage
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Latency vs. Throughput

• Tradeoff: startup speed vs. execution performance
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Startup speed Execution performance

Interpreter Best Poor

‘Quick’ compiler Fair Fair

Optimizing compiler Poor Best
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Multi-Stage Dynamic Compilation System
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interpreted

code

fully optimized

code

when execution count = t2  (e.g. 25,000)

Stage 1:

Stage 2:

Stage 3:

compiled

code

when execution count = t1  (e.g. 2000)

Execution count is the sum of
method invocations & back edges executed
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Granularity of Compilation: Per Method?

• Methods can be large, especially after inlining

– Cutting/avoiding inlining too much hurts performance considerably

• Compilation time is proportional to the amount of code being compiled

– Moreover, many optimizations are not linear

• Even “hot” methods typically contain some code that is rarely/never executed
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Example: SpecJVM98 db
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void read_db(String fn) {

int n = 0, act = 0; int b; byte buffer[] = null;

try {

FileInputStream sif = new FileInputStream(fn);

n = sif.getContentLength();

buffer = new byte[n];

while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;

}

sif.close();

if (act != n) {

/* lots of error handling code, rare */

}

} catch (IOException ioe) {

/* lots of error handling code, rare */

}

}

Hot

loop
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Example: SpecJVM98 db
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void read_db(String fn) {

int n = 0, act = 0; int b; byte buffer[] = null;

try {

FileInputStream sif = new FileInputStream(fn);

n = sif.getContentLength();

buffer = new byte[n];

while ((b = sif.read(buffer, act, n-act))>0) {

act = act + b;

}

sif.close();

if (act != n) {

/* lots of error handling code, rare */

}

} catch (IOException ioe) {

/* lots of error handling code, rare */

}

}

Lots of

rare code!
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Optimize hot “code paths”, not entire methods

• Optimize only the most frequently executed 
code paths within a method

– Simple technique: 

• Track execution counts of basic blocks 
in Stages 1 & 2

• Any basic block executing in Stage 2
is considered to be not rare

• Beneficial secondary effect of improving 
optimization opportunities on the common paths

• No need to profile any basic block executing 
in Stage 3

– Already fully optimized

1815-745: Dynamic Code Optimization
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% of Basic Blocks in Methods that are Executed > Threshold Times
(hence would get compiled under per-method strategy)
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% of Basic Blocks that are Executed > Threshold Times
(hence get compiled under per-basic-block strategy)
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Dynamic Code Transformations

• Compiling partial methods

• Partial dead code elimination

• Partial escape analysis

2115-745: Dynamic Code Optimization
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III. Partial Method Compilation

1. Based on profile data, determine the set of rare blocks

– Use code coverage information from the first compiled version

2215-745: Dynamic Code Optimization

Goal: Program runs correctly with white blocks 
compiled and blue blocks interpreted

What are the challenges?
• How to transition from white to blue
• How to transition from blue to white
• How to compile/optimize ignoring blue
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Partial Method Compilation

2. Perform live variable analysis

– Determine the set of live variables at rare block entry points
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live: x,y,z
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Partial Method Compilation

3. Redirect the control flow edges that targeted rare blocks, 
and remove  the rare blocks

24

to interpreter…

15-745: Dynamic Code Optimization

Once branch to 
interpreter, never 
come back to 
compiled (no blue-
to-white transitions)

Deoptimization
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Partial Method Compilation

4. Perform compilation normally

– Analyses treat the interpreter transfer point as an unanalyzable method call

2515-745: Dynamic Code Optimization

Deoptimization
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Partial Method Compilation

5. Record a map for each interpreter transfer point

– In code generation, generate a map that specifies the location, in registers 
or memory, of each of the live variables

– Maps are typically < 100 bytes

– Used to reconstruct the interpreter state
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x: sp - 4

y: r1

z: sp - 8

live: x,y,z
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Deoptimization



Carnegie Mellon

IV. Partial Dead Code Elimination

• Move computation that is only live on a rare path into the rare block, saving 
computation in the common case
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Partial Dead Code Example
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x = 0;

if (rare branch 1){

...

z = x + y;

...

}

if (rare branch 2){

...

a = x + z;

...

}

if (rare branch 1) {

x = 0;

...

z = x + y;

...

}

if (rare branch 2) {

x = 0;

...

a = x + z;

...

}
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May in fact undo an optimization done by the compiler (that did not know branch was rare) 
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V. Escape Analysis

• Escape analysis finds objects that do not escape a method or a thread

– “Captured” by method: 

• can be allocated on the stack or in registers, avoiding heap allocation

• scalar replacement: replace the object’s fields with local variables

– “Captured” by thread: 

• can avoid synchronization operations

• All Java objects are normally heap allocated, so this is a big win
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Partial Escape Analysis

• Stack allocate objects that don’t escape in the common (i.e., non-rare) blocks

• Eliminate synchronization on objects that don’t escape the common blocks

• If a branch to a rare block is taken:

– Copy stack-allocated objects to the heap and update pointers

– Reapply eliminated synchronizations
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Partial Escape Analysis Example

15-745: Dynamic Compilation 31

Allocated object escapes into
global variable cacheKey
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Partial Escape Analysis Example (cont.)
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Considering only the if branch, the allocated object does NOT escape
• In the if branch, avoid the allocation and remove the synchronization
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Oracle HotSpot JVM and Graal Dynamic Compiler
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Partial Escape Analysis implemented as an optimization on the Graal Compiler IR
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Benefits from Partial Escape Analysis
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Dynamic Optimizations in HotSpot JVM
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HotSpot JVM and Graal Dynamic Compiler
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Summary: Beyond Static Compilation

1) Profile-based Compiler:  high-level → binary, static

– Uses (dynamic=runtime) information collected in profiling passes

2) Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level → binary, dynamic

– interpreter/compiler hybrid

– supports cross-module optimization

– can specialize program using runtime information

• without separate profiling passes

• for what’s hot on this particular run
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Today’s Class: Dynamic Code Optimization
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Wednesday’s Class

• Memory Hierarchy Optimizations
– ALSU 7.4.2-7.4.3, 11.2-11.5

I. Motivation & Background

II. Overview

III. Partial Method Compilation

IV. Partial Dead Code Elimination

V. Partial Escape Analysis


