Lecture 23:

Array Dependence Analysis & Parallelization

|. Data Dependence

Il. Dependence Testing: Formulation
Ill. Dependence Testers

IV. Loop Parallelization

V. Loop Interchange

[ALSU 11.6, 11.7.8]

Phillip B. Gibbons 15-745: Parallelization 1

|. Data Dependence S a=1;
Sz b=a+ 2,
Let S, precede S;in execution. S3: a =c¢ - d;
. S4: a = b/c;

Flow (true) dependence: S; computes a data value that S; uses.
Si 8t S] E.g., S1 8t Sz and Sz St S4_

Anti dependence: S; uses a data value that S; overwrites.
Si 64 S] E.g., Sz 6° S3

Output dependence: S, computes a data value that S; overwrites.
Si 6° S] E.g., Sl 6° S3 and Sg 6° S4_

Input dependence: S; uses a data value that S; also uses.
S; 8'S; E.g., S3 8'S,

(Unlike the other 3, it is typically safe to execute S, and S; in parallel)

15-745: Parallelization 2

Data Dependence Graph

 Data dependence in a program may be represented using a dependence
graph G=(V,E), where the nodes V represent statements in the program and
the directed edges E represent dependence relations.

Sl:a—l,'
52'b=a+2r
S3:a=c¢c - d;
S, a = b/c;

Carnegie Mellon -

15-745: Parallelization 3

Array Data Dependence: Example 1

i=2 ! i=3 ! i=4
fori=2to 4 { St S5 1 S} Sy 1 St Sy
S, ali] = b[i] +cl[i]; e -1 Q- - Q-1 Q- - -
S,: d[i] =ali | !
2} [i] = ali] st : 5 : .

a[2] a[2] a[3] a[3] a[4] al4]

e Thereis aninstance of S, that precedes an instance of S, in execution and S,
produces data that S, uses.

e S, isthe source of the dependence; S, is the sink of the dependence.

e The dependence flows between instances of statements in the same iteration
(loop-independent dependence).

e The number of iterations between source and sink (dependence distance) is 0.
The dependence direction is =.

Sl 8t= SZ or Sl 85 SZ

15-745: Parallelization 4

Array Data Dependence: Example 2

doi=2,4 St 83
S, ali] = b[i] +c[i] e
S,: d[i]=ali-1]
end do

e Thereis aninstance of S, that precedes an instance of S, in execution and S,
produces data that S, uses.

e S, isthe source of the dependence; S, is the sink of the dependence.

e The dependence flows between instances of statements in different iterations
(loop-carried dependence).

e The dependence distance is 1. The direction is positive (<).
Sl 8t< Sz or Sl 6t1 Sz

15-745: Parallelization 5

Example 3
i=2 : i=3 : i=4
doi=2 4 St S; s S st S3
S,: ali] = bli] + c[i] ®--0- :- @ --@ -1 @ --—0@
S,: d[i] = a[i+1] l N e l N\:S/‘ N
end do ; ;
a[2] a[3] a[3] a[4] a[4] a[5]

e Thereis an instance of S, that precedes an instance of S, in execution and S,
uses data that S; overwrites.

e S, isthe source of the dependence; S, is the sink of the dependence.
e The dependence is loop-carried.
e The dependence distance is 1. The direction is positive (<).

S, 828, or S; 61S4

® Are you sure you know why itis S 5 82 S, even though S, appears before S, in
the code?

15-745: Parallelization 6

Example 4: 2D lteration Space

doi=2,4 Al1,3] Al1,4] A[1,5]
doj=2,4 S[2,2] S[2,3] S[2,4]
S: Ali,j] = Ali-1,j+1]
end do
end do

® Aninstance of S precedes
another instance of Sand S
produces data that S uses.

e Sisboth source and sink.

e The dependence is loop-
carried.

e The dependence distance is
(1,-1).

S 85.S or S87_;S

A[4,3] Al4,4]

15-745: Parallelization 7

Il. Dependence Testing: Formulation

« Consider the following perfect nest of depth d: “perfect” means step=1
doI =L,V
doI, =L, U, array reference
- N
: - B N
dol, =Ly, U,) a(. fi@), .)
a(f (D), K@), £,(D) =~ /‘
- =a(g,(I),g,(I),--,g,(I))
enddo subscript subscript
- position expression
enddo
enddo
T =yl 14)
L = L, L Affine expressions:
. (Ll 2 d) Co + il + ¢yl + -+ cy4ly
U=(U;U,,---,Uy) for constants cg, ¢y, ..., C4
L <U

15-745: Parallelization 8

Problem Formulation

. erendence will exist if there exists two iteration vectors
kand j such that L<k<j<U and:

fl(R) = 91(])

f,(K) = 92(J)

and

and

and

1tm (R) =Om (_j)

e Thatis:
; fl(lz)_gld) =0
an ~ -
and fz(k)._QZ(J) =0
and

fm(lz) - 9m(j) =0

15-745: Parallelization 9

Problem Formulation - Example

doi=2,4
S;: ali]l =b[i] + c[i]
S,: dli] = ali-1]
end do

* Does there exist two iteration vectors i; and i,, such that
2<i;<i,<4andsuchthat i;=i,-1?

* Answer:yes; i,=2 &i,=3 and ;=3 & i, =4.
* Hence, there is dependence!

* The dependence distance vector is i,-i; = 1.
 The dependence direction vector is sign(1) = <.

15-745: Parallelization 10

Problem Formulation - Example
doi=2,4
S,: ali] = b[i] + c[i]
S,: dl[i] = a[i+1]
end do

* Does there exist two iteration vectors i, and i,, such that
2<i;<i,<4andsuchthat i; =i, +1?

* Answer:yes; i,=3 &i,=2 and i;=4 & i,=3. (But, but!).
* Hence, there is dependence!

* The dependence distance vector is i,-i; = -1.

 The dependence direction vector is sign(-1) = >.

* |sthis possible? Yes: As an antidependence, not a true dependence

15-745: Parallelization 11

Problem Formulation - Example

doi=1, 10
S;: a[2*i] = bli] + c[i]
S,: d[i] =a[2*i+1]
end do

* Does there exist two iteration vectors i; and i,, such that
1<i;<i,<10andsuch that 2*i, =2%*i,+1?

* Answer:no; 2*ijiseven & 2*i,+1is odd
* Hence, there is no dependence!

15-745: Parallelization 12

Problem Formulation

 Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraints!

* An algorithm that determines if there exists two iteration
vectors kand | that satisfies these constraints is called a
dependence tester.

doI =L,V
do Iz .=|1,U2

doT,=L,U,)
G(fl(I),fz(I),,fm(I)) -

.-=a(g,(I),9,(I), -, 9, (I))
enddo

enddo
enddo

15-745: Parallelization 13

Problem Formulation

 Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraints!

* An algorithm that determines if there exists two iteration vectors
k and j that satisfies these constraints is called a dependence tester.

 The dependence distance vector is given by | - k.
* The dependence direction vector is give by sign(] - k).
 Dependence testing is NP-complete!

A dependence test that reports dependence only when there is
dependence is said to be exact. Otherwise it is in-exact.

A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be assumed.

15-745: Parallelization 14

lll. Dependence Testers

 Lamport’s Test.

* GCD Test.

* Banerjee’s Inequalities.
* Generalized GCD Test.
* Power Test.

* |-Test.

* Omega Test.

* Delta Test.

e Stanford Test.

e eftc..

15-745: Parallelization 15

Lamport’s Test

 Lamport’s Test is used when there is a single index variable in the subscript
expressions, and when the coefficients of the index variable in both expressions
are the same.

A("',b*i+C1,'”):"'
'“=A('“,b*i+C2,'“)

* The dependence problem: does there exist i, and i,, such that L, <i; <i, < U, and
such that b*i, +c; =b*i,+c,? e,

. . Ci1—C2
I2— 1= b ?

C1—C2
* There is integer solution if and only if " is integer.

C1—C2
* Thedependence distanceisd=" if |[d| <U;-L

e d>0 = truedependence
d=0 = loopindependent dependence
d<0 = antidependence

15-745: Parallelization 16

Lamport’s Test - Example

doi=1,n
doj=1,n
S: ali,j] = ali-1,j+1]

end do
/ end do \

%3 — ¥

¢ i1=i2'1? ° j1=j2+1?
b=1;c,=0;¢c,=-1 b=1;¢c,=0;¢c,=1
Cl_C2:1 Cl_C2:_1
b b
There is dependence. There is dependence.
Distance (i) is 1. Distance (j) is -1.

\ /

t t
S 8.-S or $86; 48

15-745: Parallelization 17

Lamport’s Test — Another Example

doi=1,n
doj=1,n
S: ali,2*j] = a[i-1,2*j+1]

end do
/ end do \

%3 — ¥

. ip=i,-1? . 2%, = 2%, + 17
b=1¢,=0;¢,=-1 b=2;¢c,=0;c,=1

Ci”C2 _4 a-c2_ 1

b b 2

There is dependence.
There is no dependence.

Distance (i) is 1.
\ /

?

There is no dependence!

Carnegie Mellon -

15-745: Parallelization 18

-
GCD Test

* Given the following equation:

(=1} aiX; = ¢ where a; and c are integers

an integer solution exists if and only if:

gcd(aq, a,, ..., a,) divides ¢

* Problems:
— ignores loop bounds
— gives no information on distance or direction of dependence
— often gcd(......) is 1 which always divides c, resulting in false dependences

15-745: Parallelization 19

GCD Test - Example

doi=1,10
S;: al2*i] = bli] + c[i]
S,: d[i] =a[2*i-1]
end do

* Does there exist two iteration vectors i; and i,, such that
1<i,<i,<10and such that:

2%, = 2%i,-1?
or
2%, - 2%, = 1?

* There will be an integer solution if and only if gcd(2,-2) divides 1.
* Thisis not the case, and hence, there is no dependence!

15-745: Parallelization 20

-
GCD Test: Another Example

doi=1,10
S, ali] = b[i] + c[i]
S, d[i] = a[i-100]
end do

* Does there exist two iteration vectors i, and i,, such that
1<i;,i,<10 and such that:

i, =i,-100?
or
i, -i, = 100?

* There will be an integer solution if and only if gcd(1,-1) divides 100.
* Thisis the case, and hence, there is dependence! Or is there?

No: check loop bounds. Shows a limitation of GCD.

15-745: Parallelization 21

Dependence Testing: Complications

 Unknown loop bounds:

doi=1,N
S,: ali] = a[i+10]
end do

What is the relationship between N and 10?

e Triangular loops:

doi=1,N
doj=1,i-1
S ali,j] =alj,il
end do
end do

Must impose j < i as an additional constraint.

15-745: Parallelization 22

More Complications

* User variables:
doi=1, 10
S,: ali] = ali+k]
end do

Same problem as unknown loop bounds, but occur due to some loop
transformations (e.g., loop bounds normalization).

doi=LH
S,: ali] = a[i-1]
end do

J

doi=1, H-L
S,: ali+L] = a[i+L-1]
end do

15-745: Parallelization 23

doi=1,N
S;: x=ali]
S,: bli]=x

end do

j=N-1

doi=1,N
S,: alil=alj]
S, Jj=j-1

end do

doi=1,N
S;: x[i] = ali]
S, bli] = x[i]

end do

doi=1,N

S,: ali] = a[N-i]

end do

More Complications: Scalars

privatization

15-745: Parallelization

V. Loop Parallelization

« A dependence is said to be carried by a loop if the loop is the outermost loop
whose removal eliminates the dependence. If a dependence is not carried by

the loop, it is loop-independent.

doi=2,n-1
doj=2, m-1
a(i,j) =..
= a(i, j)
b(i,j) =..
= b(i, j-1)
c(i,j) =..
=c(i-1, j)
end do
end do

15-745: Parallelization 25

Loop Parallelization

« A dependence is said to be carried by a loop if the loop is the outermost loop
whose removal eliminates the dependence. If a dependence is not carried by

the loop, it is loop-independent.
Outermost loop

with a non “=“ direction

doi=2,n-1 carries dependence!
doj=2,m-1
8L _ alij) = o loop-independent
= a(i, j)
8L _ ti(.l’ i) : .t.).(i, 1) carried by loop j
8t - C(i, J) = . . -
<= = ¢(i-1,) carried by loop i
end do
end do

15-745: Parallelization 26

Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

15-745: Parallelization 27

Loop Parallelization - Example

fork

i=2
doi=2,n-1
doj=2, m-1

5t _ b(i,j) = ..
' = b(i, j-1)

end do
end do

‘ join

* [terations of loop j must be executed sequentially, but the iterations
of loop i may be executed in parallel!

e Quter loop parallelism

15-745: Parallelization 28

Loop Parallelization - Example

j=2
doi=2,n-1
doj=2,m-1

b(i,j) =..
= b(i-1, j)

end do
end do

* [terations of loop i must be executed sequentially, but the iterations
of loop j may be executed in parallel!

* Inner loop parallelism (Vectorization, SIMD)

15-745: Parallelization 29

Loop Parallelization - Example

j=2

doi=2,n-1
doj=2,m-1
o b(i,J) =
<< = b(i-1, j-1)
end do
end do

* [terations of loop i must be executed sequentially, but the iterations
of loop j may be executed in parallel! Why?

* Innerloop parallelism

15-745: Parallelization 30

V. Loop Interchange

Recall: Used to improve spatial locality

for i = 0 to N-1 for j = 0 to N-1

forj=0toN—><>fori=0toN—1
A[j1[i] = i*3; A[j1[i] = i*j;

lo0000000 J@O0O0O0O@0O0O0 O Hit

00000000 @000@000 @ Miss
00000000 @000@000
0000000 ' Q@000@000
0000000 Q@000@000
00000000 @000@000
00000000 Q0000000
0000000 @000@®@000
j 1l

Assume row major order, N large, 4 elements per cache line

15-745: Parallelization 31

Loop Interchange

Can also be used to improve the granularity of parallelism!

doi=1,n doj=1,n
doj=1,n doi=1,n
ali,jl = bli,j] ali,j] = bli,j]
C[IIJ] = a[i-llj] : C[IIJ] = a[i-llj]
end do end do
end do end do
8L _ 8L
Inner loop parallelism Outer loop parallelism

15-745: Parallelization 32

When Is Loop Interchange Legal?

9 .ﬁ.—bﬂ [] []
_ =,<
doi=1,n o . 5 doj=1,n
doj=1,n a7 T doi=1,n
- <,= <,< ..
. alij] ali,j] ...
end do 6;' 5I> end do
end do ' ' end do

6:,_[N

Carnegie Mellon -

15-745: Parallelization 33

When Is Loop Interchange Legal? Focus only on

true dependences
(i.e., lexicographically

— > positive dependences)
.ﬁ.—PO [J [J
| 9:; 6:'<

doi=1,n . . . doj=1,n

doj=1,n [5* T doi=1,n

« » <l: <l< “« o
. alij] ali,j] ...

end do 5I> end do

end do . . N . end do

Carnegie Mellon -

15-745: Parallelization 34

When Is Loop Interchange Legal?

doi=1,n doj=1,n
doj=1,n doi=1,n
. alij] ali,j] ...
end do end do
end do end do

15-745: Parallelization 35

When Is Loop Interchange Legal?

doi=1,n | doj=1,n
doj=1,n doi=1,n
. alij] ali,j] ...
end do end do
end do end do

When is loop interchange legal?

when the “interchanged” dependences remain lexiographically positive!

15-745: Parallelization 36

Today’s Class: Array Dependence Analysis & Parallelization

|. Data Dependence

Il. Dependence Testing: Formulation
Ill. Dependence Testers

V. Loop Parallelization

V. Loop Interchange

Monday’s Class

 Domain Specific Languages

Warning: Project Milestone Reports are due in one week

15-745: Parallelization 37

