Lecture 17
Dynamic Code Optimization

. Motivation & Background

Il. Overview

Ill. Partial Method Compilation
IV. Partial Dead Code Elimination

V. Partial Escape Analysis

John Whaley, “Partial Method Compilation Using Dynamic Profile Information”, OOPSLA’01

Stadler et al., “Partial Escape Analysis and Scalar Replacement for Java,” CGO'14

1

Phillip B. Gibbons 15-745: Dynamic Code Optimization

-]
|. Beyond Static Compilation

1) Profile-based Compiler: high-level = binary, static

— Uses (dynamic=runtime) information collected in profiling passes

2) Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level = binary, dynamic

— interpreter/compiler hybrid
— supports cross-module optimization
— can specialize program using runtime information

* without separate profiling passes

15-745: Dynamic Code Optimization 2

1) Dynamic Profiling Can Improve Compile-time Optimizations

e Understanding common dynamic behaviors may help guide optimizations
— e.g., control flow, data dependences, input values

void foo(int A, int B) {
R——1! What are typical values of A, B?

while (..) {
if (A > B) €
*p = 0;€ How often does *p==val[i]?
C =val[i] + D;e___
E += C - B;

How often is this condition true?

~ Is this loop invariant?

* Profile-based compile-time optimizations
— e.g., speculative scheduling, cache optimizations, code specialization

15-745: Dynamic Code Optimization 3

Profile-Based Compile-time Optimization

1. Compile statically 2. Collect profile 3. Re-compile, using profile
(using typical inputs)

[progl.c [inputl [progl.c

V execution
profile
runme.exe
{ (instrumented) }
i’

[runme.exe } execution
profile

e Collecting control-flow profiles is relatively inexpensive

— profiling data dependences, data values, etc., is more costly
* Limitations of this approach?

— e.g., need to get typical inputs

{ runme_v2.exe }

Carnegie Mellon -

15-745: Dynamic Code Optimization 4

Instrumenting Executable Binaries

1. Compile statically 2. Collect profile
(using typical inputs)
P

V- Va

[progl.c [inputl
How to perform the

‘.--W-...A / instrumentation?
4 -

Sl runme.exe |%
. . L]

s (instrumented))2
execution
profile

1. The compiler could insert it directly

binary
instrumentation
tool

[runme.exe }

2. A binary instrumentation tool could modify the executable directly
— that way, we don’t need to modify the compiler
— compilers that target the same architecture (e.g., x86) can use the same tool

Carnegie Mellon -

15-745: Dynamic Code Optimization 5

Binary Instrumentation/Optimization Tools

* Unlike typical compilation, the input is a binary (not source code)
* One option: static binary-to-binary rewriting

[runme.exe runme_modified.exe }

e Challenges (with the static approach):

— what about dynamically-linked shared libraries?
— if our goal is optimization, are we likely to make the code faster?
* acompiler already tried its best, and it had source code (we don’t)
— if we are adding instrumentation code, what about time/space overheads?
* instrumented code might be slow & bloated if we aren’t careful
* optimization may be needed just to keep these overheads under control

 Bottom line: the purely static approach to binary rewriting is rarely used

15-745: Dynamic Code Optimization 6

2) (Pure) Interpreter

* One approach to dynamic code execution/analysis is an interpreter
— basic idea: a software loop that grabs, decodes, and emulates each instruction

while (stillExecuting) {
inst = readInst (PC) ;
instInfo = decodelnst(inst) ;
switch (instInfo.opType) {
case binaryArithmetic: ..
case memoryLoad: ..

}
PC = nextPC(PC,instInfo) ;

e Advantages:

— also works for dynamic programming languages (e.g., Java)
— easy to change the way we execute code on-the-fly (SW controls everything)
* Disadvantages:

— runtime overhead!
* each dynamic instruction is emulated individually by software

15-745: Dynamic Code Optimization 7

-
A Sweet Spot?

* |sthere a way that we can combine:
— the flexibility of an interpreter (analyzing and changing code dynamically); and
— the performance of direct hardware execution?

e Key insights:

— increase the granularity of interpretation
«—instruetions = chunks of code (e.g., procedures, basic blocks)

— dynamically compile these chunks into directly-executed optimized code
» store these compiled chunks in a software code cache
* jump in and out of these cached chunks when appropriate
* these cached code chunks can be updated!

— invest more time optimizing code chunks that are clearly hot/important
e easy to instrument the code, since already rewriting it
* must balance (dynamic) compilation time with likely benefits

15-745: Dynamic Code Optimization 8

3) Dynamic Compiler

while (stillExecuting) {
if (!'codeCompiledAlready (PC)) {
compileChunkAndInsertInCache (PC) ;

}
jumpIntoCodeCache (PC) ;

// compiled chunk returns here when finished
PC = getNextPC(..);

* This general approach is widely used:

— Java virtual machines
— dynamic binary instrumentation tools (Valgrind, Pin, Dynamo Rio)

— hardware virtualization

* In the simple dynamic compiler shown above, all code is compiled
— In practice, can choose to compile only when expected benefits exceed costs

9

15-745: Dynamic Code Optimization

Components in a Typical Just-In-Time (JIT) Compiler

e Dynamic Code | .
IR Optimizer |~ 7"
) g \
Input : “Interpreter” Compiled Code
Program -“| Control Loop Cache (Chunks)

Cache Manager
(Eviction Policy)

e Cached chunks of compiled code run at hardware speed
— returns control to “interpreter” loop when chunk is finished
* Dynamic optimizer uses profiling information to guide code optimization
— as code becomes hotter, more aggressive optimization is justified
—replace the old compiled code chunk with a faster version
e Cache manager typically discards cold chunks (but could store in secondary structure)

15-745: Dynamic Code Optimization 10

II. Overview of Dynamic Compilation / Code Optimization

* Interpretation/Compilation/Optimization policy decisions

— Choosing what and how to compile, and how much to optimize
e Collecting runtime information

— Instrumentation

— Sampling
e Optimizations exploiting runtime information

— Focus on frequently-executed code paths

15-745: Dynamic Code Optimization 11

Dynamic Compilation Policy

AT, =T, n *T

compile (executions improvement)

— If AT, is negative, our compilation policy decision was effective.

* We can try to:
— Reduce T, (faster compile times)
— Increase T, ovement (8ENETate better code: but at cost of increasing T,
— Focus on large n,..utions (COMpile/optimize hot spots)

ompile)

e 80/20 rule: Pareto Principle
— 20% of the work for 80% of the advantage

15-745: Dynamic Code Optimization 12

-]
Latency vs. Throughput

* Tradeoff: startup speed vs. execution performance

Startup speed Execution performance
Interpreter Best Poor
‘Quick’ compiler Fair Fair
Optimizing compiler Poor Best

15-745: Dynamic Code Optimization 13

Multi-Stage Dynamic Compilation System

Stage 1:

Stage 2:

Stage 3:

interpreted
code

Execution count is the sum of
method invocations & back edges executed

when execution count =t1 (e.g. 2000)

compiled
code

when execution count =t2 (e.g. 25,000)

fully optimized
code

15-745: Dynamic Code Optimization

Granularity of Compilation: Per Method?

 Methods can be large, especially after inlining
— Cutting/avoiding inlining too much hurts performance considerably

 Compilation time is proportional to the amount of code being compiled
— Moreover, many optimizations are not linear

* Even “hot” methods typically contain some code that is rarely/never executed

15-745: Dynamic Code Optimization 15

Example: SpecJVM98 db

void read db(String £fn) {
int n = 0, act = 0; int b; byte buffer[] = null;
try {
FileInputStream sif = new FileInputStream(£fn) ;
n = sif.getContentLength() ;
buffer = new byte[n];
Hot while ((b = sif.read(buffer, act, n-act))>0) {
— act = act + b;
loop }
sif.close() ;
if (act '= n) {
/* lots of error handling code, rare */

}
} catch (IOException ioe) {

/* lots of error handling code, rare */

}

15-745: Dynamic Code Optimization 16

-
Example: SpecJVM98 db

void read db(String £fn) {
int n = 0, act = 0; int b; byte buffer[] = null;
try {
FileInputStream sif = new FileInputStream(£fn) ;
n = sif.getContentLength() ;
buffer = new byte[n];
while ((b = sif.read(buffer, act, n-act))>0) {
act = act + b;

b Lots of
sif.close();
if (act '= n) { rare code!

/* lots of error handling code, rare */4—l

}
} catch (IOException ioe) {

/* lots of error handling code, rare */ o

}

15-745: Dynamic Code Optimization 17

Optimize hot “code paths”, not entire methods

interpreted
* Optimize only the most frequently executed Stage 1: g
code paths within a method code
— Simple technique:

* Track execution counts of basic blocks
in Stages 1 & 2

* Any basic block executing in Stage 2 compiled
is considered to be not rare Stage 2: code

* Beneficial secondary effect of improving
optimization opportunities on the common paths

* No need to profile any basic block executing - fully optimized
in Stage 3 Stage 3: code

— Already fully optimized

15-745: Dynamic Code Optimization 18

% of Basic Blocks in Methods that are Executed > Threshold Times
(hence would get compiled under per-method strategy)

100.00%

—&— Linpack
—s— JavaCUP

A=

—~——

\\\ "\\\\ —&— JavalEX

80.00%

—l— SwingSet

’\\

©
@
Q
-
§ 60.00% : ook
é \ —8— compress
_13 40.00% \\ \.\ \\:gA +—Jess
% —=—db
o :
% 20.00% Javac
NN —&— mpegaud
—n
000% 1 1 1 1 1 mtrt
' —A— jack

1 10 100 500 1000 2000 5000

execution threshold

Carnegie Mellon -

15-745: Dynamic Code Optimization 19

% of basic blocks executed

% of Basic Blocks that are Executed > Threshold Times
(hence get compiled under per-basic-block strategy)

100.00%
—e&— Linpack
20.00% —=— JavaCUP
' —a— JavalLEX
—l— SwingSet
60.00% —%— check
—&— compress
40.00% +— jess
—=—db
20.00% Javac
—&— mpegaud
—&— mtrt
0.00% : : : — A jack

1 10 100 500 1000 2000 5000

execution threshold

Carnegie Mellon -

15-745: Dynamic Code Optimization 20

Dynamic Code Transformations

* Compiling partial methods
e Partial dead code elimination
e Partial escape analysis

15-745: Dynamic Code Optimization 21

-
lIl. Partial Method Compilation

1. Based on profile data, determine the set of rare blocks
— Use code coverage information from the first compiled version

Goal: Program runs correctly with white blocks
compiled and blue blocks interpreted

What are the challenges?

 How to transition from white to blue
 How to transition from blue to white

* How to compile/optimize ignoring blue

15-745: Dynamic Code Optimization 22

-
Partial Method Compilation

2. Perform live variable analysis
— Determine the set of live variables at rare block entry points

live: x,y,z

15-745: Dynamic Code Optimization 23

Partial Method Compilation

3. Redirect the control flow edges that targeted rare blocks,
and remove the rare blocks

to interpreter...

Once branch to
interpreter, never
come back to
compiled (no blue-
to-white transitions)

Carnegie Mellon -

15-745: Dynamic Code Optimization 24

-
Partial Method Compilation

4. Perform compilation normally
— Analyses treat the interpreter transfer point as an unanalyzable method call

Deoptimization

15-745: Dynamic Code Optimization 25

-
Partial Method Compilation

5. Record a map for each interpreter transfer point

— In code generation, generate a map that specifies the location, in registers
or memory, of each of the live variables

— Maps are typically < 100 bytes
— Used to reconstruct the interpreter state

live: x,y,z

Deoptimization X:sp - 4

I y:rl

|z:sp-8 |

15-745: Dynamic Code Optimization 26

IV. Partial Dead Code Elimination

 Move computation that is only live on a rare path into the rare block, saving
computation in the common case

15-745: Dynamic Code Optimization 27

Partial Dead Code Example

x = 0; if (rare branch 1) {
if (rare branch 1) { x =0;
zZ = x +vy; zZ = x +vy;
} }
if (rare branch 2) { # if (rare branch 2) {
x = 0;
a=x++ z,;
a=x+4+ z;
}
}

May in fact undo an optimization done by the compiler (that did not know branch was rare)

15-745: Dynamic Code Optimization 28

-]
V. Escape Analysis

e Escape analysis finds objects that do not escape a method or a thread
— “Captured” by method:
e can be allocated on the stack or in registers, avoiding heap allocation
e scalar replacement: replace the object’s fields with local variables
— “Captured” by thread:
e can avoid synchronization operations
e All Java objects are normally heap allocated, so this is a big win

15-745: Dynamic Code Optimization 29

Partial Escape Analysis

e Stack allocate objects that don’t escape in the common blocks

Eliminate synchronization on objects that don’t escape the common blocks

 |Ifabranch to a rare block is taken:

— Copy stack-allocated objects to the heap and update pointers
— Reapply eliminated synchronizations

Stack
Heap
\ stack \
obiect w i mu P
] &
LS
rewrite
] stack
object

15-745: Dynamic Code Optimization 30

-
Oracle HotSpot JVM and Graal Dynamic Compiler

Graal
| Compiler | Java
e /.- § . N
| GraalAP| | | Client Server
; i | Compiler | | Compiler
Interpreter GC
Class Loading

HotSpot VM)

Figure 1: Overview of HotSpot and Graal.

15-745: Dynamic Code Optimization 31

-
Dynamic Optimizations in HotSpot JVM

= compiler tactics = language-specific techniques = loop transformations
delayed compilation class hierarchy analysis loop unrolling
tiered compilation devirtualization loop peeling
on-stack replacement symbolic constant propagation safepoint elimination
delayed reoptimization autobox elimination iteration range splitting
program dependence graph rep. escape analysis range check elimination
static single assignment rep. lock elision loop vectorization

= proof-based techniques lock fusion = global code shaping
exact type inference de-reflection inlining (graph integration)
memory value inference = speculative (profile-based) techniques global code motion
memory value tracking optimistic nullness assertions heat-based code layout
constant folding optimistic type assertions switch balancing
reassociation optimistic type strengthening throw inlining
operator strength reduction optimistic array length strengthening = control flow graph transformation
null check elimination untaken branch pruning local code scheduling
type test strength reduction optimistic N-morphic inlining local code bundling
type test elimination branch frequency prediction delay slot filling
algebraic simplification call frequency prediction graph-coloring register allocation
common subexpression elimination = memory and placement transformation linear scan register allocation
integer range typing expression hoisting live range splitting

= flow-sensitive rewrites expression sinking copy coalescing
conditional constant propagation redundant store elimination constant splitting
dominating test detection adjacent store fusion copy removal
flow-carried type narrowing card-mark elimination address mode matching
dead code elimination merge-point splitting instruction peepholing

DFA-based code generator

15-745: Dynamic Code Optimization 32

HotSpot JVM and Graal Dynamic Compiler

4
max
c
-2 Application
o (compiled)
=
— — |
I -
VMinit | App init | App active | Appactive | Shutdown UM€
| | (warmup) | (steady) |
. . : .) Author: Aleksey Shipilev
JVM Java main() First conscious action Reached Shutdown
invoked invoked from application semi-optimal performance requested

15-745: Dynamic Code Optimization 33

Summary: Beyond Static Compilation

1) Profile-based Compiler: high-level = binary, static

— Uses (dynamic=runtime) information collected in profiling passes

2) Interpreter: high-level, emulate, dynamic

3) Dynamic compilation / code optimization: high-level = binary, dynamic

— interpreter/compiler hybrid

— supports cross-module optimization

— can specialize program using runtime information
* without separate profiling passes

* for what’s hot on this particular run

15-745: Dynamic Code Optimization 34

Today’s Class: Dynamic Code Optimization

|. Motivation & Background

. Overview

Ill. Partial Method Compilation
V. Partial Dead Code Elimination

V. Partial Escape Analysis

Friday’s Class: Student Presentations 1

* Portability
* Dynamic Optimization

15-745: Dynamic Code Optimization 35

