
Carnegie Mellon

Lecture 12

Register Allocation & Spilling

I. Introduction

II. Abstraction and the Problem

III. Algorithm

IV. Spilling

Phillip B. Gibbons 15-745: Register Allocation 1

ALSU 8.8

Carnegie Mellon

I. Introduction

• Problem

– Allocation of variables (pseudo-registers) to hardware registers in a procedure

• Motivation: A very important optimization!

– Directly reduces running time

• (memory access register access)

– Useful for other optimizations

• e.g. CSE assumes old values are kept in registers

15-745: Register Allocation 2

Carnegie Mellon

Goals

• Find an allocation for all pseudo-registers, if possible

• If there are not enough registers in the machine,
choose registers to spill to memory

15-745: Register Allocation 3

Carnegie Mellon

Register Assignment Example

15-745: Register Allocation 4

B = …

= A

D =

= B + D

L1: C = …

= A

D =

= C + D

A = …

IF A goto L1

• Find an assignment (without spilling) that uses only 2 registers:
• A and D in one register, B and C in the other

• What does this assignment assume?
• After code segment, no use of A & at most one of B or C is used

A

B C

D

Carnegie Mellon

II. An Abstraction for Allocation & Assignment

• Intuitively

– Two pseudo-registers (i.e., program variables) interfere if
at some point in the program they cannot both occupy the same register.

• Interference graph: an undirected graph, where

– nodes = pseudo-registers

– there is an edge between two nodes if their corresponding
pseudo-registers interfere

• What is not represented

– Extent of the interference between uses of different variables

– Where in the program is the interference

15-745: Register Allocation 5

Interfere many
times vs. once

E.g., cold path
vs. hot path

Carnegie Mellon

Register Allocation and Coloring

• A graph is n-colorable if:

– every node in the graph can be colored with one of the n colors such that two
adjacent nodes do not have the same color.

• Assigning n register (without spilling) = Coloring with n colors

– assign a node to a register (color) such that no two adjacent nodes are
assigned same registers (colors)

• Is spilling necessary? = Is the graph n-colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2

– Too expensive

– Use heuristics

15-745: Register Allocation 6

Carnegie Mellon

III. Algorithm: Overview

Step 1. Build an interference graph

a. refining notion of a node

b. finding the edges

Step 2. Coloring

– use heuristics to try to find an n-coloring

• Success:

– colorable and we have an assignment

• Failure:

– graph not colorable, or

– graph is colorable, but heuristics did not find a coloring

15-745: Register Allocation 7

Carnegie Mellon

Step 1a. Nodes in an Interference Graph

15-745: Register Allocation 8

B = …

= A

D =

= B + D

L1: C = …

= A

D =

= D + C

A = …

IF A goto L1

A = 2

= A

A

B C

D

Interference Graph

?

Should we add A-D edge?
No, since new def of A

Carnegie Mellon

Live Ranges and Merged Live Ranges

• Motivation: to create an interference graph that is easier to color

– Eliminate interference in a variable’s “dead” zones.

– Increase flexibility in allocation:

• can allocate same variable to different registers

• A live range consists of a definition and all the points in a program (e.g. end of an
instruction) in which that definition is live.

‒ How to compute a live range?

• live variables & reaching definitions

• Two overlapping live ranges for the same variable must be merged

15-745: Register Allocation 9

a = … a = …

… = a

Carnegie Mellon

Must
merge

15-745: Register Allocation 10

Register Allocation Example (Revisited)

A = ... (A1)
IF A goto L1

L1: C = ... (C1)
= A

D = ... (D2)
= D + C

B = ... (B1)
= A

D = … (D1)
= B + D

A = 2 (A2)

= A

ret D

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B1}
{B} {A1,B1}
{B,D} {A1,B1,D1}
{D} {A1,B1,D1}

Live Variables
Reaching Definitions

{A} {A1}
{A,C} {A1,C1}
{C} {A1,C1}
{C,D} {A1,C1,D2}
{D} {A1,C1,D2}

{D} {A1,B1,C1,D1,D2}
{A,D} {A2,B1,C1,D1,D2}

{A,D} {A2,B1,C1,D1,D2}
{D} {A2,B1,C1,D1,D2}

Recall: variable v is live at point p if
the value of v is used on some
path starting at p

Two overlapping live ranges for
the same variable must be merged

Carnegie Mellon

Merging Live Ranges

• Merging definitions into equivalence classes

– Start by putting each definition in a different equivalence class

– Then, for each point in a program:

• if (i) variable is live, and (ii) there are multiple reaching definitions for the variable,
then:

– merge the equivalence classes of all such definitions into one equivalence
class

• (Sound familiar?)

• From now on, refer to merged live ranges simply as live ranges

– merged live ranges are also known as “webs”

15-745: Register Allocation 11

Carnegie Mellon

SSA Revisited: What Happens to Functions

• Now we see why it is unnecessary to “implement” a function

– functions and SSA variable renaming simply turn into merged live ranges

• When you encounter: X4 = (X1, X2, X3)

– merge X1, X2, X3, andX4 into the same live range

– delete the function

• Now you have effectively converted
back out of SSA form

15-745: Register Allocation 12

y1 x1 y2 2

y3 (y1,y2)

z1 y3 + x1

x1 1

y1 y2

Merge

Carnegie Mellon

Step 1b. Edges of Interference Graph

• Intuitively:

– Two live ranges (necessarily of different variables) may interfere
if they overlap at some point in the program

– Algorithm:

• At each point in the program:

– enter an edge for every pair of live ranges at that point

• An optimized definition & algorithm for edges:

– Algorithm:

• check for interference only at the start of each live range

– Faster

– Better quality

15-745: Register Allocation 13

Carnegie Mellon

Live Range Example 2

15-745: Register Allocation 14

A = … L1: B = …

IF Q goto L1

IF Q goto L2

L2: … = B… = A

Live range for A Live range for B

Live ranges overlap

Because ranges overlap: Won’t assign A and B to same register
(even though would have been ok: path sensitive vs. path insensitive analysis)

Carnegie Mellon

Step 2. Coloring

• Reminder: coloring for n > 2 is NP-complete

• Observations:

– a node with degree < n

• can always color it successfully, given its neighbors’ colors

– a node with degree = n

• can color only if at least two neighbors share same color

– a node with degree > n

• maybe, not always

15-745: Register Allocation 15

A

B C

D

n=2

Carnegie Mellon

Coloring Heuristic

• Algorithm:

– Iterate until stuck or done

• Pick any node with degree < n

• Remove the node and its edges from the graph

– If done (no nodes left)

• reverse process and add colors

• Example (n = 3):

• Note: degree of a node may drop in iteration

• Avoids making arbitrary decisions that make coloring fail (e.g., B, A, D different colors)

15-745: Register Allocation 16

B

CE A

D B

C

D

E B

CE A

D

A

x

x

x

x

Carnegie Mellon

15-745: Register Allocation 17

Coloring + Register Assignment

• Apply coloring heuristic

Build interference graph
Iterate until there are no nodes left

If there exists a node v with less than n neighbor
push v on register allocation stack

else
return (coloring heuristics fail)

remove v and its edges from graph

• Assign registers

While stack is not empty
Pop v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Carnegie Mellon

What Does Coloring Accomplish?

• Done:

– colorable, also obtained an assignment

• Stuck:

– colorable or not?

15-745: Register Allocation 18

B

CE A

D

n=2

Will heuristic find a coloring?

B

CE A

D

No: Stuck since no node with degree < n

Is there a n=2 coloring? yes

Carnegie Mellon

IV. Extending Coloring: Design Principles

• A pseudo-register is

– Colored successfully: allocated a hardware register

– Not colored: left in memory

• Objective function

– Cost of an uncolored node:

• proportional to number of uses/definitions (dynamically)

• estimate by its loop nesting

– Objective: minimize sum of cost of uncolored nodes

• Heuristics

– Benefit of spilling a pseudo-register:

• increases colorability of pseudo-registers it interferes with

• can approximate by its degree in interference graph

– Greedy heuristic

• spill the pseudo-register with lowest cost-to-benefit ratio, whenever spilling is
necessary

15-745: Register Allocation 19

Carnegie Mellon

Spilling to Memory

• CISC architectures

– can operate on data in memory directly

– memory operations are slower than register operations

• RISC architectures

– machine instructions can only apply to registers

– Use

• must first load data from memory to a register before use

– Definition

• must first compute RHS in a register

• store to memory afterwards

– Even if spilled to memory, needs a register at time of use/definition

15-745: Register Allocation 20

Carnegie Mellon

15-745: Register Allocation 21

Chaitin: Coloring and Spilling

• Apply coloring heuristic

Build interference graph
Iterate until there are no nodes left

If there exists a node v with less than n neighbor
push v on register allocation stack

else
v = node with highest degree-to-cost ratio
mark v as spilled

remove v and its edges from graph

• Spilling may require use of registers (must reload at each use, store at each
def); change interference graph

While there is spilling
rebuild interference graph and perform step above

• Assign registers

While stack is not empty
Pop v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors

Carnegie Mellon

Spilling

• What should we spill?

– Something that will eliminate a lot of interference edges

– Something that is used infrequently

– Maybe something that is live across a lot of calls?

• One Heuristic:

– Cost-to-degree-ratio = [(# defs & uses)*10loop-nest-depth]/degree

– Spill node with highest degree-to-cost ratio

15-745: Register Allocation 22

Carnegie Mellon

Quality of Chaitin’s Algorithm

• Problem: Can give up on coloring too quickly

An optimization: “Prioritize the coloring”

– Still eliminate a node and its edges from graph

– Do not commit to “spilling” just yet

– Try to color again in assignment phase

• Problem: All or nothing

– Why not try to keep a pseudo-register in a hardware register part of the time?

15-745: Register Allocation 23

B

A C

D

E

n=2

Gives up but colorable

Carnegie Mellon

Splitting Live Ranges

• Different perspective: Instead of choosing variables to spill, choose live ranges to split

• Split pseudo-registers into live ranges to make interference graph easier to color

– Eliminate interference in a variable’s “dead” zones

– Increase flexibility in allocation:

• can allocate same variable to different registers

15-745: Register Allocation 24

IF A goto L1

A =

B = L1: C =
= A

D =
= A

D =

A = D

= A

= B+D = C+D

A1

CB

D

A2

n=2

Carnegie Mellon

Insight

• Split a live range into smaller regions (by paying a small cost) to create an
interference graph that is easier to color

– Eliminate interference in a variable’s “nearly dead” zones.

• Cost: Memory loads and stores

– Load and store at boundaries of regions with no activity

• Initially: # active live ranges at a program point can be > # registers

– Can allocate same variable to different registers

• Cost: Register operations

– a register copy between regions of different assignments

• Goal: # active live ranges cannot be > # registers

15-745: Register Allocation 25

Carnegie Mellon

15-745: Register Allocation 26

Splitting Live Range Example

FOR i = 0 TO 10

FOR j = 0 TO 10000

A = A + ...

(does not use B)

FOR j = 0 TO 10000

B = B + ...

(does not use A)

n=2
A

B i

j

spill
B

spill
A

spill
i

Carnegie Mellon

15-745: Register Allocation 27

a =

b =
= a + b

c =

= b+c

b =

c =
= a + c

n=2

Example: Allocate Same Variable to Different Registers

a

b c

Can’t 2-color

a =

b =
= a + b

c =

= b+c

b =

c =
= a1 + c

a1 = a a

b c

a1

Can 2-color
(“a” gets 2 regs)

Carnegie Mellon

Live Range Splitting: Recap So Far

• When do we apply live range splitting?

• Which live range to split?

• Where should the live range be split?

• How to apply live-range splitting with coloring?

– Advantage of coloring:

• defers arbitrary assignment decisions until later

– When coloring fails to proceed, may not need to split live range

• degree of a node >= n does not mean that the graph definitely is not colorable

– Interference graph does not capture positions of a live range

15-745: Register Allocation 28

when more live ranges than registers

based on cost/benefit ratio

split where large inactive region

Carnegie Mellon

A Spilling Algorithm Focused on Live-Range Splitting

• Observation: spilling is absolutely necessary if

– number of live ranges active at a program point > n

• Apply live-range splitting before coloring

– Identify a point where number of live ranges > n

– For each live range active around that point:

• find the outermost “block construct”
that does not access the variable

– Choose a live range with the largest inactive region

– Split the inactive region from the live range

15-745: Register Allocation 29

k = k + 1

j = j + 1

i = i + 1

= x

x =

n=3

x

k i

j

split x,
then can color

Carnegie Mellon

Summary

• Problems:

– Given n registers in a machine, is spilling avoided?

– Find an assignment for all pseudo-registers, whenever possible.

• Solution:

– Abstraction: an interference graph

• nodes: live ranges

• edges: presence of live range at time of definition

– Register Allocation and Assignment problems

• equivalent to n-colorability of interference graph

 NP-complete

– Heuristics to find an assignment for n colors

• successful: colorable, and finds assignment

• not successful: colorability unknown & no assignment

15-745: Register Allocation 30

Carnegie Mellon

Today’s Class

3115-745: Register Allocation

Wednesday’s Class

• Register Allocation: Coalescing

I. Introduction

II. Abstraction and the Problem

III. Algorithm

IV. Spilling

