
1

Carnegie Mellon

Lecture 7
Global Common Subexpression Elimination; Constant Propagation/Folding

I. Available Expressions Analysis
II. Eliminating CSEs
III. Constant Propagation/Folding

[ALSU 9.2.6, 9.4]
Phillip B. Gibbons 15-745: GCSE & Constants 1

Carnegie Mellon

Review: A Check List for Data Flow Problems
• Semi-lattice

– set of values V
– meet operator 
– Top T
– finite descending chain?

15-745: GCSE & Constants 2

Meet Operator: Union

{d2}{d1}
T = {d1,d2}

{}
Meet Operator: Intersection

Carnegie Mellon

Review: A Check List for Data Flow Problems
• Semi-lattice

– set of values V
– meet operator 
– Top T
– finite descending chain?

• Transfer functions
– function of a basic block f: V  V
– closed under composition
– meet-over-paths MOP
– monotone
– distributive?

15-745: GCSE & Constants 3

If data flow framework is monotone(i.e., x ≤ y implies f(x) ≤ f(y))then if the algorithm converges, IN[b] ≤ MOP[b]

For each node n: MOP(n) =  fpi (T), for all paths pi reaching n

If data flow framework is distributive(i.e., f(x  y) = f(x)  f(y))then if the algorithm converges, IN[b] = MOP[b]

Data flow framework (monotone) converges if there is a finite descending chain

Carnegie Mellon

Example: MOP considers more paths than Ideal

15-745: GCSE & Constants 4

if x == 1B1

B2 B3

if x == 0B4

B5 B6

B7

Assume: B2 & B3 do not update x

Ideal: Considers only 2 paths B1-B2-B4-B6-B7 (i.e., x=1)B1-B3-B4-B5-B7 (i.e., x=0)

MOP: Also considers unexecuted paths B1-B2-B4-B5-B7B1-B3-B4-B6-B7

2

Carnegie Mellon

Review: A Check List for Data Flow Problems
• Semi-lattice

– set of values V
– meet operator 
– Top T
– finite descending chain?

• Transfer functions
– function of a basic block f: V  V
– closed under composition
– meet-over-paths MOP
– monotone
– distributive?

• Algorithm
– initialization step (entry/exit, other nodes)
– visit order: rPostOrder
– depth of the graph

15-745: GCSE & Constants 5

Number of iterations = number of back edges in any acyclic path + 2

❼

❺ ❻

B0

B2 B1

❹

❷ ❸

B3

B5 B4

❶B6

B0,B1,…,B6 is rPostOrder

Carnegie Mellon

Global Common Subexpressions

• Availability of an expression E at point P
• DEFINITION: Along every path to P in the flow graph:

– E must be evaluated at least once
– no variables in E redefined after the last evaluation

• Observation: E may have different values on different paths (e.g., x+y above)
15-745: GCSE & Constants 6

ldc t3 = 0
cpy x = t3
add t4 = x, y
cpy m = t4

sub t5 = a, b
ldc t6 = -1
cpy c = t6

sub t7 = a, b
cpy m = t7
add t8 = x, y
add t9 = c, d

add t1 = x, y
add t2 = c, d

no

no
yes

Is expression available?

Carnegie Mellon

Available Expressions Example

15-745: GCSE & Constants 7

Is 4*i available at this point?

a = 3

yes yes

Carnegie Mellon

Formulating the Problem
• Domain:

• a bit vector, witha bit for each textually unique expression in the program
• Forward or Backward?
• Lattice Elements?
• Meet Operator?

• check: commutative, idempotent, associative
• Partial Ordering
• Top?
• Bottom?
• Boundary condition: entry/exit node?
• Initialization for iterative algorithm?

15-745: GCSE & Constants 8

{e2}{e1}
T = {e1,e2}

{}
Meet Operator: Intersection

T = (1,1)
(1,0) (0,1)

(0,0)
Meet Operator: Elementwise-min

Forward
All bit vectors of given length
Elementwise-min

(1,1,…,1)
(0,0,…,0)

out[entry]=(0,…,0)
Coming soon…

3

Carnegie Mellon

Transfer Functions
• Can use the same equation as reaching definitions

• out[b] = gen[b]  (in[b] - kill[b])
• Start with the transfer function for a single instruction

• When does the instruction generate an expression?
• When does it kill an expression?

• Calculate transfer functions for complete basic blocks
• Compose individual instruction transfer functions

15-745: GCSE & Constants 9

{}

{} Carnegie Mellon

Composing Transfer Functions
• Derive the transfer function for an entire block

• Since out1 = in2 we can simplify:
• out2 = gen2 U ((gen1 U (in1 - kill1)) - kill2)
• out2 = gen2 U (gen1 - kill2) U (in1 - (kill1 U kill2))
• out2 = gen2 U (gen1 - kill2) U (in1 - (kill2 U (kill1 - gen2)))

• Result
• gen = gen2 U (gen1 - kill2)
• kill = kill2 U (kill1 - gen2)

15-745: GCSE & Constants 10

1

2

in1

out2 = gen2 U (in2 – kill2)

out1 = gen1 U (in1 – kill1) = in2

Carnegie Mellon

B2

Initialization for Interior Nodes

15-745: GCSE & Constants 11

B1 out[b] = Gen[b] U (in(b)-Kill[b])

What if initialize out[B2] = {}?

{e2}{e1}
T = {e1,e2}

{}
Meet Operator: Intersection

What if initialize out[B2] = T?
Incorrect: in[B2]={}
Correct: in[B2]=out[B1]

Initialize out[b]=T for all interior b
Carnegie Mellon

II. Eliminating CSEs
• Available expressions (across basic blocks)

– provides the set of expressions available at the start of a block
• Value Numbering (within basic block)

– Initialize Values table with available expressions
• If CSE is an “available expression”, then transform the code

– Original destination may be:
• a temporary register
• overwritten
• different from the variables on other paths

– One solution: Copy the expression to a new variable at each evaluation reaching the redundant use

15-745: GCSE & Constants 12

4

Carnegie Mellon

Review: Value Numbering
a = b+c
b = a-d
c = b+c
d = a-d

15-745: GCSE & Constants 13

b c

+

-

1 d

2

+ 3

t1 = b + c
a = t1
t2 = t1 - d
b = t2
t3 = t2 + c
c = t3
d = t2

Carnegie Mellon

Example Revisited

15-745: GCSE & Constants 14

ldc t3 = 0
cpy x = t3
add t4 = x, y
cpy m = t4

sub t5 = a, b
ldc t6 = -1
cpy c = t6

sub t7 = a, b
cpy m = t7
add t8 = x, y
add t9 = c, d

add t1 = x, y
add t2 = c, d

add t10 = x, y
t1 = t10

add t10 = x, y
t4 = t10

t8 = t10

Carnegie Mellon

Limitation: Textually Identical Expressions
• Commutative operations

– sort the operands

15-745: GCSE & Constants 15

add t1 = x, y add t2 = y, x

add t3 = x, y

Carnegie Mellon

Further Improvements
• Examples

– Expressions with more than two operands

– Textually different expressions may be equivalent
add t1 = x, y
beq t1, t2, L1
cpy z = x
add t3 = z, y

15-745: GCSE & Constants 16

add t1 = x, y
add t2 = t1, z

add t3 = y, x
add t4 = t3, z

add t5 = x, y
add t6 = t5, z

Use multiple passes of GCSE combined with copy propagation

5

Carnegie Mellon

Summary

15-745: GCSE & Constants 17

Reaching Definitions Available Expressions
Domain Sets of definitions Sets of expressions
Transfer function fb(x)Generate U Propagate
direction of function forward: out[b] = fb(in[b]) forward: out[b] = fb(in[b])
Generate Genb: exposed definitions Genb: expressions evaluated
Propagate in[b]-Killb: definitions killed in[b]-Killb: expressions killed
Meet operation U (in[b]= U out[predecessors])  (in[b]=  out[predecessors])
Initialization out[entry] = out[b] = out[entry] = out[b] = all expressions

Carnegie Mellon

III. Constant Propagation/Folding
• At every basic block boundary, for each variable v

• determine if v is a constant
• if so, what is the value?

15-745: GCSE & Constants 18

x = 2
m = x + e e = 3

p = e + 4

e = 1

e, x, m are eacha constant value
e is nota constant value

Carnegie Mellon

Semi-lattice Diagram

– Finite domain?
– Finite height?

15-745: GCSE & Constants 19

undef

... -3 -2 -1 0 1 2 3 ...

NAC

No (unless bound number of bits)
Yes (2)

Carnegie Mellon

Equivalent Definition
• Meet Operation:

– Note: undef  c2 = c2!

15-745: GCSE & Constants 20

v1 v2 v1  v2
undef undef undef

c2 c2
NAC NAC

c1
undef c1
c2 c1, if c1 =c2NAC otherwise
NAC NAC

NAC undef NAC
c2 NAC
NAC NAC

6

Carnegie Mellon

Example

15-745: GCSE & Constants 21

x = 2

p = x

x = UNDEF

x = UNDEF
x = UNDEFx = 2x = 2

Carnegie Mellon

Transfer Function
• Assume a basic block has only 1 instruction
• Let IN[b,x], OUT[b,x]

– be the information for variable x at entry and exit of basic block b

• OUT[entry, x] = undef, for all x.
• Non-assignment instructions: OUT[b,x] = IN[b,x]
• Assignment instructions: (next page)

15-745: GCSE & Constants 22

Carnegie Mellon

Constant Propagation (Cont.)
• Let an assignment be of the form x3 = x1 + x2

• “+” represents a generic operator
• OUT[b,x] = IN [b,x], if x  x3

• Use: x ≤ y implies f(x) ≤ f(y) to check if framework is monotone
• [v1 v2 ...]  [v1’ v2’ ...], f([v1 v2 ...])  f ([v1’ v2’ ...])

15-745: GCSE & Constants 23

IN[b,x1] IN[b,x2] OUT[b,x3]
undef undef undef

c2 undef
NAC NAC

c1
undef undef
c2 c1 + c2
NAC NAC

NAC undef NAC
c2 NAC
NAC NAC

Carnegie Mellon

Distributive?

• Not Distributive
• Iterative solution is not precise!

– it is also not wrong
– it is conservative

15-745: GCSE & Constants 24

x = 2
y = 3

x = 3
y = 2

z = x + y

7

Carnegie Mellon

Summary of Constant Propagation
• A useful optimization
• Illustrates:

– abstract execution
– an infinite semi-lattice
– a non-distributive problem

15-745: GCSE & Constants 25
Carnegie Mellon

Monday’s Class
• Static Single Assignment (SSA) [ALSU 6.2.4]

15-745: GCSE & Constants 26

