Lecture 5

Introduction to Data Flow Analysis

I. Structure of data flow analysis
Il. Example 1: Reaching definition analysis
lll. Example 2: Liveness analysis

IV. Framework

1

Phillip B. Gibbons 15-745: Intro to Data Flow

Review: Expression DAG

Example 1:
« grammar (for bottom-up parsing): E->E+T|E-T|T, T->T*F|F, F->(E)|id
* expression: a+a* (b-c)+(b-c)*d

.+ 12.*

.3/7 \ /\ 6.+\ 8.\7.(1

6.% 10.- 11.d 5.%
l.a
2.a /5—\ 8.b 9.c /4—\
3.b 4.c 2.b 3.c
Parse tree Expression DAG
Carnegie Mellon -
15-745: Intro to Data Flow 2

Review: Value Numbering

Data structure:
VALUES = Table of

expression /* [OP, valnuml, valnum2] */
var /* name of variable currently holding expr */
Var2value () /* variable’s current value number */
®3
a = bt+c tl =b + ¢ /
2
a=tl @
b = a-d t2 = tl - d / \
b = t2
d
c = btc t3 = t2 + ¢ @1
c = t3 / \
d = a-d = t2
d t. b <
Carnegie Mellon -
15-745: Intro to Data Flow 3

]
What is Data Flow Analysis?

* Local analysis (e.g. value numbering)
— analyze effect of each instruction

— compose effects of instructions to derive information
from beginning of basic block to each instruction

« Data flow analysis
— analyze effect of each basic block
— compose effects of basic blocks to derive information at basic block
boundaries
— from basic block boundaries, apply local technique to generate information on
instructions

[ALSU 9.2]
Carnegie Mellon -

15-745: Intro to Data Flow 4

]
What is Data Flow Analysis? (Cont.)

« Data flow analysis:
— Flow-sensitive: sensitive to the control flow in a function
— intraprocedural analysis
* Examples of optimizations:
— Constant propagation
— Common subexpression elimination
— Dead code elimination

a=b+c

d=7 For each variable x, determine:
|e=b+c| |a=243| Value of x?

Which “definition” defines x?
e = d+3
g=a Is the definition still meaningful (live)?
Carnegie Mellon -

15-745: Intro to Data Flow 5

Static Program vs. Dynamic Execution

Bl | a =10

B2 || 1f input() |e»exit

o
\1)

B3 -1

)

* Statically: Finite program
* Dynamically: Can have infinitely many possible execution paths
« Data flow analysis abstraction:

— For each point in the program:
combines information of all the instances of the same program point.

« Example of a data flow question:
— Which definition defines the value used in statement “b = a”?

Carnegie Mellon -

]
Effects of a Basic Block

* Effect of a statement: a = b+c
* Uses variables (b, c)
« Kills an old definition (old definition of a)
« new definition (a)
* Compose effects of statements -> Effect of a basic block

* Alocally exposed use in a b.b. is a use of a data item which is not preceded in the
b.b. by a definition of the data item

« any definition of a data item in the basic block kills all definitions of the same data
item reaching the basic block.

* Alocally available definition = last definition of data item in b.b.

tl = rl+r2
r2 = tl
t2 = r2+rl
rl = t2
t3 = rl*rl
r2 = t3

if r2>100 goto L1

Carnegie Mellon -

15-745: Intro to Data Flow 7

15-745: Intro to Data Flow 6
Il. Reaching Definitions ALSUS.2.4
Bl 40: y = 3
Dy
dl: x = 10 d1. reac.hes
IE> a2y =11 this point?

if e

B2 «—— —, B3
% d3: x = x+1 d5: x 4 %
d4: y = y+4 dé6: z = x

e

* Every assignment is a definition

* Adefinition d reaches a point p
if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.
¢ Problem statement
— For each point in the program, determine if each definition in the program
reaches the point
— A bit vector per program point, vector-length = #defs

Carnegie Mellon -

15-745: Intro to Data Flow 8

Il. Reaching Definitions

Bl[gg. v =
Zg i _ io d2 reaches
d2: v =11 this point?
if e
B2 «— — B3 @
d3: x = x+1 d5: x = 4
d4: y = y+4 dé: z = x

* Every assignment is a definition

* A definition d reaches a point p
if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

¢ Problem statement

— For each point in the program, determine if each definition in the program
reaches the point

— A bit vector per program point, vector-length = #tdefs

Carnegie Mellon -

15-745: Intro to Data Flow 9

Reaching Definitions: Another Example

this point?

[L1: if input() GoTO L2 |

15-745: Intro to Data Flow 10

Data Flow Analysis Schema

out[entry]
in[B1]

Bl
£
out[B1]
in[B2] A{}A in[B3]
£, £
out[B2]

out[B3]
in[exit]
exit

* Build a flow graph (nodes = basic blocks, edges = control flow)
« Setup a set of equations between in[b] and out[b] for all basic blocks b
— Effect of code in basic block:
 Transfer function f, relates in[b] and out[b], for same b
— Effect of flow of control:
* relates out[b], in[b’] if b and b” are adjacent
* Find a solution to the equations

15-745: Intro to Data Flow

Effects of a Statement

in[Bl]

out[Bl]

f, : A transfer function of a statement
— abstracts the execution with respect to the problem of interest
* Forastatement s (e.g., d: x=y +2)
out[s] = f(in[s]) = Gen[s] U (in[s]-Kill[s])
— Gen[s]: definitions generated: Genl[s] = {d}
— Propagated definitions: in[s] - Kill[s],
where Kill[s]=set of all other defs to x in the rest of program

15-745: Intro to Data Flow

12

) Example
Effects of a Basic Block £Xample
in[B1]
fh0 Bllao: y =3 £ Gen Kill
di: x = 10 1 {1,2}(3,4,5}
_ d2: =11 2 ,4} {1,2,
fa fo = faa*fur*fao 5i(f e 3 :; si :1 3}5}
fdz /\
out[B1] B2 |43: x = x+1 ds: x = 4| B3
* Transfer function of a statement s: d4: y = y+4 dé: z = x
« out[s] =f,(in[s]) = Gen[s] U (in[s]-Kill[s]) \/
« Transfer function of a basic block B:
. X . * atransfer function f, of a basic block b:
* Composition of transfer functions of statements in B OUT[b] = £,(IN[b])
. . =Tyl
* out[B] = fy(in[B]) = fi,fufyolin[B]) incoming reaching definitions -> outgoing reaching definitions
=Gen[d,] U (Gen[d,] U (Gen[d,] U (in[B]-Kill[d,]))-Kill[d,])) -Kill[d,] « Abasic block b
= Gen[d,] U (Gen[d,] U (Gen[d,] - Kill[d,]) - Kill[d,]) U + generates definitions: Gen[b],
in[B] - (Kill[d,] U Kill[d,] U Kill[d,]) — set of definitions in b that reach end of b
=Gen[B] U (in[B] - Kill[B]) + kills definitions: in[b] - Kill[b],
* Gen|[B]: locally available definitions (defined locally & reaches end of bb) where Kill[b]=set of defs (in rest of program) killed by defs in b
* Kill[B]: set of definitions killed by B « out[b] = Gen[b] U (in(b)-Kill[b])
15-745: Intro to Data Flow 13 15-745: Intro to Data Flow 14
Effects of the Edges (acyclic) Cyclic Graphs
entry
out[entry] inf[1] y
in[B1] :
£, out[1]
out[Bl]
in[B2] — T iy in(2] nlexit]
£, £5 out[2]
out[B2] out[B3]
in[exit] in[3]
out|[3}
* out[b] =fy(in[b])
¢ Join node: a node with multiple predecessors « Equations still hold
* meet operator: * out[b] = f,(in[b])
in[b] = out[p,] U out[p,] U ... U out[p,], where in[exit] = out[B2] U out[B3] * in[b] = out[p,] U out[p,] U ... U out[p,], py, --., P, pred.
Py, ..., P, are all predecessors of b * Find: fixed point solution
Carnegie Mellon - Carnegie Mellon -
15-745: Intro to Data Flow 15 15-745: Intro to Data Flow 16

Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
out[Entry] = &

// Initialization for iterative algorithm
For each basic block B other than Entry
out[B] = &

// iterate
While (Changes to any out[] occur) {
For each basic block B other than Entry {
in[B] = U (out[p]), for all predecessors p of B
out[B] = £;(in[B]) // out[B]=gen[B]U(in[B]-kill[B])

Carnegie Mellon -

15-745: Intro to Data Flow 17

]
Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Initialize
out[Entry] = & // can set out[Entry] to special def
// if reaching then undefined use
For all nodes i
out[i] = & // can optimize by out[il=gen[i]
ChangedNodes = N

// iterate
While ChangedNodes # @& {

Remove i from ChangedNodes
in[i] = U (out[p]), for all predecessors p of i
oldout out[i]
out[i] = £, (in[i]) // out[il=gen[i]U(in[i]-kill[i])
if (oldout # out[i]) {

for all successors s of i

add s to ChangedNodes

15-745: Intro to Data Flow 18

Reaching Definitions Example

en
il First Pass Second Pass
dl: i = m-1 IN[B1] 0000000 0000000
Bl d2: j = n
d3: a = ul
OUT[B1] 1110000 1110000
l‘ IN[B2] 1110000 1110111
B2 d4: 1 = i+l
ds: § = j-1
OUT[B2] 0011100 0011110
IN[B3] 0011100 0011110
OUT[B3] 0001110 0001110
IN[B4] 0011110 0011110
OUT[B4] 0010111 0010111
IN[exit] 0010111 0010111

Carnegie Mellon -

15-745: Intro to Data Flow 19

A legal solution to Reaching Definitions?

@'5—73 out [entry]={}
in[1]={}
out[1]={}
in[2]={d1} another iteration
of algorithm
out [2]={d1l} won’t change
in/out values
in[3]={d1}
dl: b =1
out [3]={dl}
L 1
i inf[exit]

* Will the worklist algorithm generate this answer? Nno
* What if add control flow edge shown in red? yes

Carnegie Mellon -

15-745: Intro to Data Flow 20

IIl. Live Variable Analysis

* Definition

v live at
— Avariable v is live at point p if this point?
« the value of v is used along some path in the flow graph starting at p.
— Otherwise, the variable is dead.
* Motivation Zg Fv= io
. . D ox =
. eg. reglster_all_ocatlon E> d2: y =1
for i =0 ton if e

i ves)>
E:) —
gori=0ton = =
i

4=
N
N
X

+ Problem statement T

— For each basic block
* determine if each variable is live in each basic block

— Size of bit vector: one bit for each variable

Carnegie Mellon -

Effects of a Basic Block (Transfer Function)

* Insight: Trace uses backwards to the definitions

an execution path control flow example
def . -
IN[b — d3: a =1
i [b] fHOUTP) G702 2 1
%I oet \I| fb
d5: c = a
H OUT[b] Pe=
? use dé6: a = 4

¢ Abasic block b can IN[b] = {2} U (OUTIb] - {a.cl)

« generate live variables: Use[b]
— set of locally exposed uses in b
* propagate incoming live variables: OUT[b] - Def[b],
— where Def[b]= set of variables defined in b.b.
 transfer function for block b:
in[b] = Use[b] U (out(b)-Def[b])

Carnegie Mellon -

15-745: Intro to Data Flow 22

15-745: Intro to Data Flow 21
Flow Graph
f Use Def
entr
out[entry] 1 {} {a,b}
) 2 {b} {a,c}
1
R Py 3 {a) {b,d}
outf1] |2 =0
in[2] in[3]
a=1 d =a
c=b b=4d
out[2] out[3]

* in[b] =f,(out[b])

* Join node: a node with multiple successors
* meet operator:
out[b] = in[s;] U in[s,] U ... Uin[s], where
Sy, ..., Sy are all successors of b

Carnegie Mellon -

15-745: Intro to Data Flow 23

Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
in[Exit] = @

// Initialization for iterative algorithm
For each basic block B other than Exit
in[B] = &

// iterate
While (Changes to any in[] occur) {
For each basic block B other than Exit {
out[B] = U (in[s]), for all successors s of B
in[B] = £, (out[B]) // in[B]=Use[B]U (out[B]-Def[B])

Carnegie Mellon -

15-745: Intro to Data Flow 24

Live Variables Example

First Pass
Second Pass

OUT[entry] {m,n,ul,u2,u3} {m,n,ul,u2,u3}

dl: i = m-1 IN(B1] {m,n,uL,u2,u3} {m,nul,u2,u3}
Bl d2: j = n
d3: a = ul
ouT[B1] {i,j,u2,u3} {i,j,u2,u3}
i,ju2,u i,j,u2,u
li IN[B2] {i,j,u2,u3} {i,ju2,u3}
By |d4: 1= i+l
ds: j = -1
OUT[B2] {u2,u3} {j,u2,u3}
IN[B3] {u2,u3} {j,u2,u3}
ouT[B3] {u3} {j,u2,u3}
IN[B4] {u3} {j,u2,u3}
ouT[B4] {} {i,j,u2,u3}

Carnegie Mellon -

15-745: Intro to Data Flow 25

IV. Framework

Reaching Definitions

Live Variables

Domain

Sets of definitions

Sets of variables

Direction

forward:
out([b] =f(in[b])
in[b] = A out[pred(b)]

backward:
in[b] = fy(out[b])
out[b] = A in[succ(b)]

Transfer function

fy(x) = Geny U (x —Kill,)

fy(x) = Usey, U (x -Defy,)

Meet Operation (A) v V]
Boundary Condition out[entry] =& in[exit] =&
Initial interior points out[b] =& in[b] = &

Other Data Flow Analysis problems fit into this general framework,
e.g., Available Expressions [ALSU 9.2.6]

Carnegie Mellon -

15-745: Intro to Data Flow 26

Questions

¢ Correctness
« equations are satisfied, if the program terminates.

* Precision: how good is the answer?
« is the answer ONLY a union of all possible executions?

* Convergence: will the analysis terminate?
« or, will there always be some nodes that change?

* Speed: how fast is the convergence?
* how many times will we visit each node?

Carnegie Mellon -

15-745: Intro to Data Flow 27

]
Wednesday’s Class

* Foundations of Data Flow Analysis

— ALSU9.3

15-745: Intro to Data Flow

28

Carnegie Mellon -

