
1

Carnegie Mellon

Lecture 4
Local Optimizations

I. Basic blocks/Flow graphs
II. Abstraction 1: DAG
III. Abstraction 2: Value numbering

Phillip B. Gibbons 15-745: Local Optimizations 1
Carnegie Mellon

I. Basic Blocks & Flow Graphs
Basic block = a sequence of 3-address statements

– only the first statement can be reached from outside the block (no branches into middle of block)
– all the statements are executed consecutively if the first one is (no branches out or halts except perhaps at end of block)
– We require basic blocks to be maximal, i.e., they cannot be made larger without violating the conditions

Flow graph
• Nodes: basic blocks
• Edges: Bi -> Bj, iff Bj can follow Bi immediately in some execution

– Either first instruction of Bj is target of a goto at end of Bi– Or, Bj physically follows Bi, which does not end in an unconditional goto.

15-745: Local Opts 2

Carnegie Mellon

Partitioning into Basic Blocks
Identify the leader of each basic block
• First instruction
• Any target of a jump
• Any instruction immediately following a jump

Basic block starts at leader & ends at instruction immediately before a leader (or the last instruction)

15-745: Local Optimizations 3

ALSU pp. 529-531
Carnegie Mellon

15-745: Local Optimizations 4

= Leader

2

Carnegie Mellon

II. Local Optimizations (within basic block)
• Common subexpression elimination

– array expressions
– field access in records
– access to parameters

15-745: Local Optimizations 5
Carnegie Mellon

Graph Abstractions
Example 1:
• grammar (for bottom-up parsing): E -> E + T | E – T | T, T -> T*F | F, F -> (E) | id
• expression: a+a*(b-c)+(b-c)*d

15-745: Local Optimizations 6

1.a

2.a

3.b 4.c

5.-

6.*

7.+

8.b 9.c

10.- 11.d

12.*
13.+

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*
9.+

Parse tree Expression DAG

Carnegie Mellon

Graph Abstractions
Expression: a+a*(b-c)+(b-c)*d

15-745: Local Optimizations 7

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*
9.+Optimized code:

t1 = b - c
t2 = a * t1
t3 = a + t2
t4 = t1 * d
t5 = t3 + t4

ALSU pp. 359-362
Carnegie Mellon

How well do DAGs hold up across statements?

Example 2:
a = b+c;
b = a-d;
c = b+c;
d = a-d;

15-745: Local Optimizations 8

b c

+

-

a d

b

+ c

,d

Is this optimized code correct?
a = b+c;
d = a-d;
c = d+c;

Depends on whether b is live on exit from the block

3

Carnegie Mellon

Critique of DAGs
• Cause of problems

– Assignment statements
– Value of variable depends on TIME

• How to fix problem?
– build graph in order of execution
– attach variable name to latest value

• Final graph created is not very interesting
– Key: variable->value mapping across time
– loses appeal of abstraction

15-745: Local Optimizations 9
Carnegie Mellon

III. Value Number: Another Abstraction
• John Cocke & Jack Schwartz in unpublished book: “Programming Languages and their Compilers”, (1970) (ALSU pp. 360-362)
• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value
– used to determine the value number of current expression
r1 + r2 => var2value(r1)+var2value(r2)

15-745: Local Optimizations 10

Variables Values(dynamic)(static)

var2value(current)

Carnegie Mellon

Value Numbering: Expression Example
Expression: a+a*(b-c)+(b-c)*d

15-745: Local Optimizations 11

1.a

2.b 3.c

4.-

5.*

6.+

7.d

8.*
9.+Optimized code:

t4 = b - c
t5 = a * t4
t6 = a + t5
t8 = t4 * d
t9 = t6 + t8

Carnegie Mellon

Value Numbering Algorithm
Data structure:

VALUES = Table of
expression /* [OP, valnum1, valnum2] */
var /* name of variable currently holding expr */

For each instruction (dst = src1 OP src2) in execution order
valnum1=var2value(src1); valnum2=var2value(src2)
IF [OP, valnum1, valnum2] is in VALUES

v = the index of expression
Replace instruction with: dst = VALUES[v].var

ELSE
Add

expression = [OP, valnum1, valnum2]
var = dst

to VALUES
v = index of new entry

set_var2value (dst, v)

15-745: Local Optimizations 12

4

Carnegie Mellon

More Details
• What are the initial values of the variables?

– values at beginning of the basic block
• Possible implementations:

– Initialization: create “initial values” for all variables
– Or dynamically create them as they are used

• Implementation of VALUES and var2value: hash tables

15-745: Local Optimizations 13
Carnegie Mellon

Value Numbering: Basic Block Example
a = b+c
b = a-d
c = b+c
d = a-d

15-745: Local Optimizations 14

b c

+

-

1 d

2

+ 3

t1 = b + c
a = t1
t2 = t1 - d
b = t2
t3 = t2 + c
c = t3
d = t2

Q: Assigning to a temporary and then copying to the destination increases the number of instructions—so why do it?
A: If dst is overwritten later, would lose opportunity to eliminate common subexpression since no variable would hold the result

Carnegie Mellon

Value Numbering Algorithm
Data structure:

VALUES = Table of
expression /* [OP, valnum1, valnum2] */
var /* name of variable currently holding expr */

For each instruction (dst = src1 OP src2) in execution order
valnum1=var2value(src1); valnum2=var2value(src2)
IF [OP, valnum1, valnum2] is in VALUES

v = the index of expression
Replace instruction with: dst = VALUES[v].var

ELSE
Add

expression = [OP, valnum1, valnum2]
var = dst

to VALUES
v = index of new entry; tv is new temporary for v
Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var

dst = tv
set_var2value (dst, v)

15-745: Local Optimizations 15
Carnegie Mellon

Question
• How do you extend value numbering to constant folding?

a = 1
b = 2
c = a+b

15-745: Local Optimizations 16

Answer: Can add a field to the VALUES table indicating when an expression is a constant and what its value is

5

Carnegie Mellon

Conclusions
• Comparisons of two abstractions

– DAGs
– Value numbering

• Value numbering
– VALUE: distinguish between variables and VALUES
– TIME

• Interpretation of instructions in order of execution
• Keep dynamic state information

15-745: Local Optimizations 17
Carnegie Mellon

Monday’s Class
• Data Flow Analysis

– ALSU 9.2

15-745: Local Optimizations 18

