Lecture 22

Prefetching Recursive Data Structures

Material from: C.-K. Luk and T. C. Mowry. "Compiler-Based Prefetching for Recursive Data
Structures.” In Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233.

Carnegie Mellon -
1

Phillip B. Gibbons 15-745: Prefetching Pointer Structures

]
Recall: Loop Splitting for Prefetching Arrays

+ Decompose loops to isolate cache miss instances
— cheaper than inserting IF(Prefetch Predicate) statements

Locality Type Predicate Loop Transformation
None True None
Temporal i=0 Peel loop i
Spatial (imodL)=0 Unroll loop i by L

(L elements/cache line)

Loop peeling: split any problematic first (or last) few iterations from the loop
& perform them outside of the loop body

‘00000000
00000000
ceo0o0co0o00

i.0.0.0.0
[N Noi JoX Neoj
0 0e00eo0eo

J Spatial J

Carnegie Mellon [JI

Temporal

15-745: Prefetching Pointer Structures 2

|
Recall: Example Code with Prefetching Arrays

(prefetch(&B[0][0]);
.. for (J =0; j < 6; j+=2) {
Original Code prefetch (sB[3+1] [01) 7
for (i = 0; i < 3; it4) prefetch (6B[§+2] [0]) ;
for (3 = 0; 3 < 100; §+4) prefetch (sA[0][3]) 1
A[L1[3] = BI3110] + B[3+11[0];)
for (5 =0; 3 <94; j +=2) {
prefetch (&B[j+7] [0]) ;
o Cﬂche H“- is= O —_— prefetch (&B[j+8][0]) ;
) prefetch (6A[0] [3+6]) ;
@ O Cache Miss A[0][3] = B[3][0]+B[3+1][0];
A[0] [3+1] = B[3+1][0]+B[3+2][0];
cqrs)
A[i]l[3] for (j = 94; j < 100; j += 2) {
i A[0][3] = BL3][0]+B[3+1][0];
[NoX NeoX NoX NeJ A[0] [3+1] = B[3+1] [0]+B[3+2] [0];
)
0000000 = for (i=1; i< 3; itH) {
00000000 for (3=0; § < 6; 3 +=2)
i prefetch (sALi] [3]) ;
J for (3 =0; j <94; j +=2) {
. prefetch (sA[i] [3+6])
B[j+1][0] A[L][3] = B[31[0] + B[3+11[0];
N 150 — A[L][3+1] = B[3+11[0] + B[3+2][0];
00000000) . 00 2
for (j = 94; j < 100; j += {
00000000 A[i][3] = B[31[0] + B[j+11[0];
00000000 A[1][3+1] = B[3+1]1[0] + B[3+2]1[0];
.)
J }

Carnegie Mellon -

15-745: Prefetching Pointer Structures 3

|
Recursive Data Structures

» Examples:
— linked lists, trees, graphs, ...

* A common method of building large data structures
— especially in non-numeric programs

+ Cache miss behavior is a concern because:

— large data set with respect fo the cache size
— temporal locality may be poor
— little spatial locality among consecutively-accessed nodes

Goal:
+ Automatic Compiler-Based Prefetching for Recursive Data Structures

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 4

|
Overview

+ Challenges in Prefetching Recursive Data Structures
+ Three Prefetching Algorithms
+ Experimental Results

» Conclusions

Carnegie Mellon -

15-745: Prefetching Pointer Structures 5

]
Scheduling Prefetches for Recursive Data Structures

curre ntly visiting want to prefetch
lp
[XX} [XX}
p =&n, - L
while (p)X load *p here

work(p->data), ~— |
rorh=tata,
p =ponex, ————————|

Our Goal: fully hide latency
— thus achieving fastest possible computation rate of 1/W

+ eg., if L=3W, we must prefefch 3 nodes ahead to achieve this

Carnegie Mellon -

15-745: Prefetching Pointer Structures 6

|
Performance without Prefetching

Time

while (p X
work(p->data);
p = p->next;

}

o660+ |

computation rate = 1/ (L+W)

Carnegie Mellon -

15-745: Prefetching Pointer Structures 7

Prefetching One Node Ahead

Time
. - " while (p){
. pf(p->next);
visting work(p->data);
- p = p->next;
prefet% }

v pf(p->next)

®
-

loading ny

work(ny)

= data dependence

LN B

« Computation is overlapped with memory accesses

computation rate = 1/L

Carnegie Mellon -

15-745: Prefetching Pointer Structures 8

Prefetching Three Nodes Ahead

while (p {
pf(p->next->next->next);
work(p->data);
p =p->next;

}

prefe(ci@

pf(p;->next->next->next)

sse=

computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:

+ any scheme which follows the pointer chain is limited to a rate of 1/L

Carnegie Mellon -

15-745: Prefetching Pointer Structures 9

|
Our Goal: Fully Hide Latency

while (p
pf(&nj,3);
work(p->data);
p =p->next;

}

prefetch
-

pf(&n;,;)

+ achieves the fastest possible computation rate of 1/W

Carnegie Mellon -

15-745: Prefetching Pointer Structures 10

|
Overview

+ Challenges in Prefetching Recursive Data Structures

+ Three Prefetching Algorithms
— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

+ Experimental Results

» Conclusions

Carnegie Mellon -

15-745: Prefetching Pointer Structures 1

]
Overcoming the Pointer-Chasing Problem

Key:
* n; needs to know &n;,. 4 without referencing the d-1 intermediate nodes

Our proposals:

. . . . an existing pointer
+ use existing pointer(s) in n; o approximate &n,, 4

— Greedy Prefetching B
a new pointer
+ add new pointer(s) fo n; to approximate &n.q
-9 ® o~
— History-Pointer Prefetching

&n; &nijsg

» compute &n,q directly from &n; (ho ptr deref) 1
— History-Pointer Prefetching °—>' . '—»@

A=Addressgenerating function

Carnegie Mellon -

15-745: Prefetching Pointer Structures 12

+ Prefetch all neighboring nodes (simplified definition)
— only one will be followed by the immediate control flow
— hopefully, we will visit other neighbors later

preorder (treeNode * t){
if (t '= NULL){
pf(t->left) ;
pf (t->right) ;
process (t->data) ;
preorder (t->left) ;
preorder (t->right) ;

+ Reasonably effective in practice
+ However, little confrol over the prefetching distance

Carnegie Mellon -

15-745: Prefetching Pointer Structures 13

History-Pointer Prefetching

* Add new pointer(s) to each node
— history-pointers are obtained from some recent traversal

youngest
~a, FE

FIFO (d=3) £5

- o

e €X18ting history-pointer currently visiting
-’.\.'['\‘{\?.j\'}" history-pointer being added
+ Trade space & time for better control over prefetching distances

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 14

|
Data-Linearization Prefetching

+ No pointer dereferences are required
* Map nodes close in the traversal to contiguous memory

preorder
traversal

prefetching distance= 3 nodes ———» prefetch

Carnegie Mellon -

15-745: Prefetching Pointer Structures 15

|
Summary of Prefetching Algorithms

Greedy History-Pointer Data-Linearization
Control over little more precise more precise
Prefetching Distance
Applicability to any RDS revisited; changes | must have a major
Recursive Data only slowly traversal order;
Structures changes only slowly
Overhead in none space + time none in practice
Preparing Prefetch
Addresses
Ease of relatively more difficult more difficulty
Implementation straightforward

+ Greedy prefetching is the most widely applicable algorithm
— fully implemented in SUIF

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 16

|
Overview

+ Challenges in Prefetching Recursive Data Structures
+ Three Prefetching Algorithms
+ Experimental Results

» Conclusions

Carnegie Mellon -

15-745: Prefetching Pointer Structures 17

|
Experimental Framework

Benchmarks
+ Olden benchmark suite
— 10 pointer-intensive programs
— covers a wide range of recursive data structures

Simulation Model
+ Detailed, cycle-by-cycle simulations
* MIPS R10000-like dynamically-scheduled superscalar

Compiler
» Implemented in the SUIF compiler

+ Generates fully functional, optimized MIPS binaries

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 18

]
Implementation of Prefetching Algorithms

Automated in the SUIF compiler

Schedule
Greedy

1
1
i
i Prefetches

Recognize ! Schedule
RDS History-Pointer
Accesses 1 Prefetches

Schedule
Data-Linearization
Prefetches

« insert prefetches at the earliest

+ identify RDS types
possible places

» find recurrent pointer updates in

loops and recursive procedures * minimize prefetching overhead

Carnegie Mellon -

15-745: Prefetching Pointer Structures 19

]
Performance of Compiler-Inserted Greedy Prefetching

s L2 %9 98 %4
i - - - . l %5 P -
il il [

Normalized Execution Time

mst bisort power em3d voronol bh tsp perimeter treeadd heaith

O = Original
G = Compiler-Inserted Greedy Prefetching

+ Eliminates much of the stall time in programs with large load stall
penalties
— half achieve speedups of 4% to 45%

Carnegie Mellon -

15-745: Prefetching Pointer Structures 20

|
Coverage Factor

100

% of Original Load D-Cache Misses

em.
mst power voronoi tsp treeadd

nopf_miss = original D-cache misses that are not prefetched
pf_miss = original D-cache misses that are prefetched but remain misses
. pf_hit = original D-cache misses that are prefetched and then hitin the D-cache

+ coverage factor = pf_hit + pf_miss
+ 7 out of 10 have coverage factors > 60%

— em3d, power, voronoi have many array or scalar load misses
+ small pf_miss fractions > effective prefetch scheduling

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 21

|
Unnecessary Prefetches

| 18484848 43

40 agag A141andt

% of PF that Hit in D-Cache
@
2
2
2
2

31 2929 3

11111 11

M0WI W 10W IS MMOWIH MOWISI0 MOWEI0 WOWE WOW IO WOW IS0 1009 W 0 1009 0

mst bisort power em3d voronoi bh tsp perimetertreeadd health

100 = all unnecessary dynamic pfs 95
.99 = exclude all static pfs with hit rates > 99% . 90

+ % dynamic pfs that are unnecessary because the data is in the D-cache
* 4 have >80% unnecessary prefetches
+ Could reduce overhead by eliminating static pfs that have high hit rates

Carnegie Mellon [

15-745: Prefetching Pointer Structures 22

|
Reducing Overhead Through Memory Feedback

@ 120

Em 100057q oo g 1000992 oo oo, 1000995990 o, 1000

c“|===N SEE Saow

o

s m

8 [l oad stai
load stal

1

w " store stall

'g inst. stall

N 4

®

E

(=}

z

G FOOFI5FI0 G FOOFI5F0 G FOOF9O5F90 G F99 F95 F90
perimeter treeadd bisort tsp

G = greedy prefetching

Fxx = greedy prefetching where static pfs with
hit rate > xx% are eliminated

+ Eliminating static pfs with hit rate >95% speeds them up by 1-8%
* However, eliminating useful prefetches can hurt performance
* Memory feedback can potentially improve performance

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 23

]
Performance of History-Pointer Prefetching

]
E 4 100.0
g 00
£ w
§ 68.6 —
2 O = original
w 80 490 G = greedy prefetching
E ® H = history-pointer prefetching
2 20

o

Health

« Applicable because a list structure does not change over time
* 40% speedup over greedy prefetching through:

— better miss coverage (64% -> 100%)

— fewer unnecessary prefetches (41% -> 29%)
« Improved accuracy outweighs increased overhead in this case

Carnegie Mellon -

15-745: Prefetching Pointer Structures 24

Performance of Data-Linearization Prefetching
.Ioad stall

store stall
inst. stall

100.0 100.0

8 8
B
~
2

o

~

]

=

O = original
G = greedy prefetching
D = data-linearization prefetching

Normalized Execution Time
& 3

2

perimeter treeadd

+ Creation order equals major traversal order in treeadd & perimeter
— hence data linearization is done without data restructuring
+ 9% and 18% speedups over greedy prefetching through:
— fewer unnecessary prefetches:
* 94%->78% in perimeter, 87%->81% in treeadd
— while maintaining good coverage factors:
+ 100%->80% in perimeter, 100%->93% in treeadd
Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 25

Conclusions

+ Three schemes to overcome the pointer-chasing problem:
— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

+ Automated greedy prefetching in SUIF
— improves performance significantly for half of Olden

— memory feedback can further reduce prefetch overhead

+ The other 2 schemes can outperform greedy in some situations

Carnegie Mellon [JI

15-745: Prefetching Pointer Structures 26

|
Monday's Class

+ Register Allocation - Coalescing

Carnegie Mellon -

15-745: Prefetching Pointer Structures 27

