Lecture 22 Prefetching Recursive Data Structures Material from: C.-K. Luk and T. C. Mowry. "Compiler-Based Prefetching for Recursive Data Structures." In Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233. Phillip B. Gibbons 15-745: Prefetching Pointer Structures 1

Recall: Loop Splitting for Prefetching Arrays • Decompose loops to isolate cache miss instances cheaper than inserting IF(Prefetch Predicate) statements Predicate Loop Transformation Locality Type None True None i = 0 Peel loop i Temporal (i mod L) = 0 Unroll loop i by L Spatial (L elements/cache line) Loop peeling: split any problematic first (or last) few iterations from the loop & perform them outside of the loop body i 0000000 0000000 • • • • • • • **•** • • • • • • • • Temporal Spatial 15-745: Prefetching Pointer Structures

Recursive Data Structures

- · Examples:
 - linked lists, trees, graphs, ...
- · A common method of building large data structures
 - especially in non-numeric programs
- · Cache miss behavior is a concern because:
 - large data set with respect to the cache size
 - temporal locality may be poor
 - little spatial locality among consecutively-accessed nodes

<u>Goal</u>:

Automatic Compiler-Based Prefetching for Recursive Data Structures

15-745: Prefetching Pointer Structures

Carnegie Mellon

15-745: Prefetching Pointer Structures

Carnegie Mellon

	Greedy	History-Pointer	Data-Linearization
Control over Prefetching Distance	little	more precise	more precise
Applicability to Recursive Data Structures	any RDS	revisited; changes only slowly	must have a major traversal order; changes only slowly
Overhead in Preparing Prefetch Addresses	none	space + time	none in practice
Ease of Implementation	relatively straightforward	more difficult	more difficulty
Greedy prefetchi – fully implemei	-	idely applicable alg	orithm

Overview Challenges in Prefetching Recursive Data Structures Three Prefetching Algorithms Experimental Results Conclusions Carnegie Mellon

Conclusions

- Three schemes to overcome the pointer-chasing problem:
 - Greedy Prefetching
 - History-Pointer Prefetching
 - Data-Linearization Prefetching
- · Automated greedy prefetching in SUIF
 - improves performance significantly for half of Olden
 - memory feedback can further reduce prefetch overhead
- The other 2 schemes can outperform greedy in some situations

15-745: Prefetching Pointer Structures

Carnegie Mellon

7