
1

Carnegie Mellon

Lecture 22
Prefetching Recursive Data Structures

Material from: C.-K. Luk and T. C. Mowry. “Compiler-Based Prefetching for Recursive Data
Structures.” In Proceedings of ASPLOS-VII, Oct. 1996, pp. 222-233.

Phillip B. Gibbons 15-745: Prefetching Pointer Structures 1
Carnegie Mellon

Recall: Loop Splitting for Prefetching Arrays
• Decompose loops to isolate cache miss instances

– cheaper than inserting IF(Prefetch Predicate) statements

2

Locality Type Predicate Loop Transformation
None True None

Temporal i = 0 Peel loop i
Spatial (i mod L) = 0 Unroll loop i by L

(L elements/cache line)

i

jTemporal

i

jSpatial

Loop peeling: split any problematic first (or last) few iterations from the loop& perform them outside of the loop body

15-745: Prefetching Pointer Structures

Carnegie Mellon

Recall: Example Code with Prefetching Arrays

15-745: Prefetching Pointer Structures 3

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)

A[i][j] = B[j][0] + B[j+1][0];

Original Code prefetch(&B[0][0]);
for (j = 0; j < 6; j += 2) {
prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);
prefetch(&A[0][j]);

}
for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+6]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j]);

for (j = 0; j < 94; j += 2) {
prefetch(&A[i][j+6]);
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

i

j

A[i][j]

i

j

B[j+1][0]

Cache HitCache Miss i = 0

i > 0

Carnegie Mellon

Recursive Data Structures
• Examples:

– linked lists, trees, graphs, ...
• A common method of building large data structures

– especially in non-numeric programs
• Cache miss behavior is a concern because:

– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data Structures

415-745: Prefetching Pointer Structures

2

Carnegie Mellon

Overview
• Challenges in Prefetching Recursive Data Structures
• Three Prefetching Algorithms
• Experimental Results
• Conclusions

515-745: Prefetching Pointer Structures
Carnegie Mellon

Scheduling Prefetches for Recursive Data Structures

6

ni

currently visiting

ni+1 ni+2 ni+3

p want to prefetch

loading a node
work()

L

W

Our Goal: fully hide latency
• thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

p = &n0while (p){
work(p ->da ta);
p = p->next ;

}

loa d *p here

Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

15-745: Prefetching Pointer Structures

Carnegie Mellon

Performance without Prefetching

7

Wi+1

 computa tion ra te = 1/ (L+W)

ni

ni+1

ni+2

ni+3

Li+1

Li Wi

Li+2 Wi+2

Li+3 Wi+3

Time
while (p){

work(p ->data);
p = p->next;

}

computation rate = 1 / (L+W)

15-745: Prefetching Pointer Structures
Carnegie Mellon

Prefetching One Node Ahead

pre fetc h

 computation rate = 1/ L

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(pi->next)

while (p){
pf(p->next);
work(p ->data);
p = p->next;

}
Li

Li+1

Li+2

Li+3

visiting

Time

• Comp uta tion is overlap ped with memory ac c esses

work(nk)Wk

Lk load ing nk

da ta d epend ence

Prefetching One Node Ahead

8

• Computation is overlapped with memory accesses
computation rate = 1/L

15-745: Prefetching Pointer Structures

3

Carnegie Mellon

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(pi->next->next->next)

Li

Li+1

Li+2

Li+3

visiting
Time

 computation rate does not improve (still = 1/ L)!
Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

ni Wi

Wi+2

Wi+3

while (p){
pf(p->next->next->next);
work(p ->data);
p = p->next;

}
L

Prefetching Three Nodes Ahead

9

computation rate does not improve (still = 1/L)!
Pointer-Chasing Problem:
• any scheme which follows the pointer chain is limited to a rate of 1/L
15-745: Prefetching Pointer Structures

Carnegie Mellon

Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2 Wi+2

Li+3 Wi+3

while (p){
pf(&ni+3);
work(p ->data);
p = p->next;

}

pf(&ni+3)

visiting

Time

 achieves the fastest possible computa tion rate of 1/ W

pre fetc h

Our Goal: Fully Hide Latency

10

• achieves the fastest possible computation rate of 1/W

15-745: Prefetching Pointer Structures

Carnegie Mellon

Overview
• Challenges in Prefetching Recursive Data Structures
• Three Prefetching Algorithms

– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Experimental Results
• Conclusions

1115-745: Prefetching Pointer Structures
Carnegie Mellon

Overcoming the Pointer-Chasing Problem
Key:

Our proposals:
use existing pointer(s) in n i to a pproximate &ni+d

a dd new pointer(s) to ni to a pproximate &ni+d

c ompute &ni+d direc tly from &ni (no ptr. d eref.)

 ni needs to know &ni+d without re ferencing the d-1 intermediate nodes

ni ni+d

an exist ing p ointer

ni ni+d

a new p ointer

A&ni &ni+d

A=Add ress ge nera ting func tion
ni ni+d

Greedy Prefetching

History-Pointer Prefetching

Data-Linearization Prefetching

Overcoming the Pointer-Chasing Problem
Key:
• ni needs to know &ni+d without referencing the d-1 intermediate nodes
Our proposals:
• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching
• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching
• compute &ni+d directly from &ni (no ptr deref)

– History-Pointer Prefetching

1215-745: Prefetching Pointer Structures

4

Carnegie Mellon

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

• Reasonably effective in practice
• However, little control over the prefetching distance

13

1
2

missmissmiss partial miss hit

3
4

8 10
6

12 14
5

9 11
7

13 15

preorder(treeNode * t){
if (t != NULL){
pf(t->left);
pf(t->right);
process(t->data);
preorder(t->left);
preorder(t->right);

}
}

15-745: Prefetching Pointer Structures
Carnegie Mellon

History-Pointer Prefetching
• Add new pointer(s) to each node

– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances
14

1
24
89
5
1011
36

preorder

15-745: Prefetching Pointer Structures

8 9 11 15

1
2 3

4 5 7

10 12 13 14

311
10

6
12

5
9

youngest

oldest
FIFO (d=3)

6

existing history-pointer
history-pointer being added

6 currently visiting

Carnegie Mellon

Data-Linearization Prefetching
• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory

15

8 9 11 15

1
2 3

4 5 6 7
10 12 13 14

preorder
traversal

1 2 4 8 9 10 11 6 12 7 14
prefetchprefetching distance= 3 nodes

5 3 13 15

15-745: Prefetching Pointer Structures
Carnegie Mellon

Summary of Prefetching Algorithms

• Greedy prefetching is the most widely applicable algorithm
– fully implemented in SUIF

16

Greedy History-Pointer Data-Linearization
Control over Prefetching Distance little more precise more precise
Applicability to Recursive Data Structures

any RDS revisited; changes only slowly must have a major traversal order; changes only slowly
Overhead in Preparing PrefetchAddresses

none space + time none in practice

Ease of Implementation relatively straightforward more difficult more difficulty

15-745: Prefetching Pointer Structures

5

Carnegie Mellon

Overview
• Challenges in Prefetching Recursive Data Structures
• Three Prefetching Algorithms
• Experimental Results
• Conclusions

1715-745: Prefetching Pointer Structures
Carnegie Mellon

Experimental Framework
Benchmarks
• Olden benchmark suite

– 10 pointer-intensive programs
– covers a wide range of recursive data structures

Simulation Model
• Detailed, cycle-by-cycle simulations
• MIPS R10000-like dynamically-scheduled superscalar
Compiler
• Implemented in the SUIF compiler
• Generates fully functional, optimized MIPS binaries

1815-745: Prefetching Pointer Structures

Carnegie Mellon

Implementation of Prefetching Algorithms
Automated in the SUIF compiler

19

RecognizeRDSAccesses

ScheduleGreedyPrefetches
ScheduleHistory-PointerPrefetches
ScheduleData-LinearizationPrefetches

• identify RDS types
• find recurrent pointer updates in loops and recursive procedures

• insert prefetches at the earliest possible places
• minimize prefetching overhead

15-745: Prefetching Pointer Structures
Carnegie Mellon

Performance of Compiler-Inserted Greedy Prefetching

• Eliminates much of the stall time in programs with large load stall penalties
– half achieve speedups of 4% to 45%

20

O = Original
G = Compiler-Inserted Greedy Prefetching

load stall
store stall
inst. stall
busy

15-745: Prefetching Pointer Structures

6

Carnegie Mellon

Coverage Factor

• coverage factor = pf_hit + pf_miss
• 7 out of 10 have coverage factors > 60%

– em3d, power, voronoi have many array or scalar load misses
• small pf_miss fractions  effective prefetch scheduling

21

nopf_miss = original D-cache misses that are not prefetched
pf_miss = original D-cache misses that are prefetched but remain misses
pf_hit = original D-cache misses that are prefetched and then hit in the D-cache

15-745: Prefetching Pointer Structures
Carnegie Mellon

Unnecessary Prefetches

• % dynamic pfs that are unnecessary because the data is in the D-cache
• 4 have >80% unnecessary prefetches
• Could reduce overhead by eliminating static pfs that have high hit rates

22

100 = all unnecessary dynamic pfs
99 = exclude all static pfs with hit rates > 99%

95
90

15-745: Prefetching Pointer Structures

Carnegie Mellon

Reducing Overhead Through Memory Feedback

• Eliminating static pfs with hit rate >95% speeds them up by 1-8%
• However, eliminating useful prefetches can hurt performance
• Memory feedback can potentially improve performance

23

load stall
store stall
inst. stall
busy

G = greedy prefetching
Fxx = greedy prefetching where static pfs with

hit rate > xx% are eliminated

15-745: Prefetching Pointer Structures
Carnegie Mellon

Performance of History-Pointer Prefetching

• Applicable because a list structure does not change over time
• 40% speedup over greedy prefetching through:

– better miss coverage (64% -> 100%)
– fewer unnecessary prefetches (41% -> 29%)

• Improved accuracy outweighs increased overhead in this case
24

O = original
G = greedy prefetching
H = history-pointer prefetching

Health

15-745: Prefetching Pointer Structures

load stall
store stall
inst. stall
busy

7

Carnegie Mellon

Performance of Data-Linearization Prefetching

• Creation order equals major traversal order in treeadd & perimeter
– hence data linearization is done without data restructuring

• 9% and 18% speedups over greedy prefetching through:
– fewer unnecessary prefetches:

• 94%->78% in perimeter, 87%->81% in treeadd
– while maintaining good coverage factors:

• 100%->80% in perimeter, 100%->93% in treeadd
25

O = original
G = greedy prefetching
D = data-linearization prefetching

15-745: Prefetching Pointer Structures

load stall
store stall
inst. stall
busy

Carnegie Mellon

Conclusions
• Three schemes to overcome the pointer-chasing problem:

– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some situations

2615-745: Prefetching Pointer Structures

Carnegie Mellon

Monday’s Class
• Register Allocation - Coalescing

2715-745: Prefetching Pointer Structures

