
1

Carnegie Mellon

Lectures 21
Prefetching Arrays

I. Tolerating Memory Latency
II. Prefetching Compiler Algorithm
III. Experimental Results
Material from: T.C. Mowry, M. S. Lam and A. Gupta. “Design and Evaluation of a Compiler

Algorithm for Prefetching.” In Proceedings of ASPLOS-V, Oct. 1992, pp. 62-73.

Phillip B. Gibbons 15-745: Prefetching Arrays 1
ALSU 11.11.4

Carnegie Mellon

Coping with Memory Latency
Reduce Latency:

– Locality Optimizations
• reorder iterations to improve cache reuse

Tolerate Latency:
– Prefetching

• move data close to the processor before it is needed

15-745: Prefetching Arrays 2

Carnegie Mellon

Tolerating Latency Through Prefetching

• overlap memory accesses with computation and other accesses
15-745: Prefetching Arrays 3

Without Prefetching With Prefetching
Time

Load A

Load B

Fetch A

Fetch B

Load A
Load B

Prefetch APrefetch B Fetch A Fetch B

Executing Instructions
Stalled Waiting for Data

Carnegie Mellon

Types of Prefetching
Cache Blocks:
• (-) limited to unit-stride accesses
Nonblocking Loads:
• (-) limited ability to move back before use
Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead
Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage

15-745: Prefetching Arrays 4

2

Carnegie Mellon

Prefetching Research Goals
• Domain of Applicability
• Performance Improvement

– maximize benefit
– minimize overhead

15-745: Prefetching Arrays 5
Carnegie Mellon

Prefetching Concepts
possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced
Analysis: what to prefetch

– maximize coverage factor
– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches
– maximize effectiveness
– minimize overhead per prefetch

15-745: Prefetching Arrays 6

Carnegie Mellon

Reducing Prefetching Overhead
• instructions to issue prefetches
• extra demands on memory system

• important to minimize unnecessary prefetches
15-745: Prefetching Arrays 7

Hit Rates for Array Accesses

Carnegie Mellon

II. Compiler Algorithm
Analysis: what to prefetch
• Locality Analysis
Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

15-745: Prefetching Arrays 8

3

Carnegie Mellon
15-745: Prefetching Arrays

Recall: Steps in Locality Analysis
1. Find data reuse

– if caches were infinitely large, we would be finished
2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected to fit within the cache
3. Find data locality:

– reuse  localized iteration space  locality

9
Carnegie Mellon

Recall: Types of Data Reuse/Locality
for i = 0 to 2
for j = 0 to 99
A[i][j] = B[j][0] + B[j+1][0]; Hit

Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group
(assume 2 elements per cache line)

15-745: Prefetching Arrays

Carnegie Mellon

Prefetch Predicate

Example:

15-745: Prefetching Arrays 11

Locality Type Miss Instance Predicate
None Every Iteration True

Temporal First Iteration i = 0
Spatial Every L iterations(L elements/cache line) (i mod L) = 0

for i = 0 to 2
for j = 0 to 99
A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate
A[i][j] (j mod L) = 0
B[j+1][0] i = 0

[ij] nonespatial[]=
[ij] temporalnone[]=

Carnegie Mellon

Compiler Algorithm
Analysis: what to prefetch
• Locality Analysis
Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

15-745: Prefetching Arrays 12

4

Carnegie Mellon

Loop Splitting
• Decompose loops to isolate cache miss instances

– cheaper than inserting IF(Prefetch Predicate) statements

15-745: Prefetching Arrays 13

Locality Type Predicate Loop Transformation
None True None

Temporal i = 0 Peel loop i
Spatial (i mod L) = 0 Unroll loop i by L

(L elements/cache line)

i

jTemporal

i

jSpatial

Loop peeling: split any problematic first (or last) few iterations from the loop& performs them outside of the loop body

Carnegie Mellon

Loop Splitting
• Decompose loops to isolate cache miss instances

– cheaper than inserting IF(Prefetch Predicate) statements

• Apply transformations recursively for nested loops
• Suppress transformations when loops become too large

– avoid code explosion

15-745: Prefetching Arrays 14

Locality Type Predicate Loop Transformation
None True None

Temporal i = 0 Peel loop i
Spatial (i mod L) = 0 Unroll loop i by L

(L elements/cache line)

Carnegie Mellon

Prefetching via Software Pipelining

where l = memory latency, s = shortest path through loop body

15-745: Prefetching Arrays 15

Iterations Ahead =  ls

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop
for (i = 0; i<6; i++) /* Prolog */

prefetch(&a[i]);
for (i = 0; i<94; i++) { /* Steady State*/

prefetch(&a[i+6]);
a[i] = 0;

}
for (i = 94; i<100; i++) /* Epilog */

a[i] = 0;

Software Pipelined Loop (6 iterations ahead)

Are there any wasted prefetches?

Carnegie Mellon

Prefetching via Software Pipelining

where l = memory latency, s = shortest path through loop body

15-745: Prefetching Arrays 16

Iterations Ahead =  ls

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop
for (i = 0; i<6; i+=2) /* Prolog */

prefetch(&a[i]);
for (i = 0; i<94; i+=2){ /* Steady State*/

prefetch(&a[i+6]);
a[i] = 0;
a[i+1] = 0;

}
for (i = 94; i<100; i++) /* Epilog */

a[i] = 0;

Software Pipelined Loop (6 iterations ahead)

(2 elements/cache line)

5

Carnegie Mellon

Example Code with Prefetching

15-745: Prefetching Arrays 17

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)

A[i][j] = B[j][0] + B[j+1][0];

Original Code prefetch(&B[0][0]);
for (j = 0; j < 6; j += 2) {
prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);
prefetch(&A[0][j]);

}
for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+6]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j]);

for (j = 0; j < 94; j += 2) {
prefetch(&A[i][j+6]);
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

i

j

A[i][j]

i

j

B[j+1][0]

Cache HitCache Miss i = 0

i > 0

Carnegie Mellon

III. Experimental Framework
Architectural Extensions:
• Prefetching support:

– lockup-free caches
– 16-entry prefetch issue buffer
– prefetch directly into both levels of cache

• Contention:
– memory pipelining rate = 1 access every 20 cycles
– primary cache tag fill = 4 cycles

• Misses get priority over prefetches
Simulator / Applications:
• Detailed cache simulator driven by pixified object code
• Memory subsystem:

– 8K L1 / 256K L2 direct-mapped caches, 32 byte lines
– miss penalties: 12 / 75 cycles

• Applications from SPEC, SPLASH, and NAS Parallel
15-745: Prefetching Arrays 18

Carnegie Mellon

Experimental Results (Dense Matrix Uniprocessor)
• Performance of Prefetching Algorithm

– Locality Analysis
– Software Pipelining

• Interaction with Locality Optimizer

15-745: Prefetching Arrays 19
Carnegie Mellon

Performance of Prefetching Algorithm

• memory stalls reduced by 50% to 90%
• instruction and memory overheads typically low
• 6 of 13 have speedups over 45%

15-745: Prefetching Arrays 20

(N = No Prefetching, S = Selective Prefetching)

6

Carnegie Mellon

Effectiveness of Locality Analysis

Selective vs. Indiscriminate prefetching:
• similar reduction in memory stalls
• significantly less overhead
• 6 of 13 have speedups over 20%
15-745: Prefetching Arrays 21

(I = Indiscriminate Prefetching, S = Selective Prefetching)

Carnegie Mellon

Effectiveness of Locality Analysis (Continued)

• fewer unnecessary prefetches
• comparable coverage factor
• reduction in prefetches ranges from 1.5 to 21 (average = 6)

15-745: Prefetching Arrays 22

Unnecessary Prefetches Coverage Factor
IndiscriminateSelective

Carnegie Mellon

Effectiveness of Software Pipelining

• Large pf-miss  ineffective scheduling
– conflicts replace prefetched data (CHOLSKY, TOMCATV)
– prefetched data still found in secondary cache

15-745: Prefetching Arrays 23

Original Miss Breakdown

Carnegie Mellon

Interaction with Locality Optimizer

• locality optimizations reduce number of cache misses
• prefetching hides any remaining latency
• best performance through a combination of both
15-745: Prefetching Arrays 24

(Cache Blocking) (Loop Interchange)

7

Carnegie Mellon

Prefetching Indirections

Analysis: what to prefetch
– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm

15-745: Prefetching Arrays 25

for (i = 0; i<100; i++)
sum += A[index[i]];

Carnegie Mellon

Software Pipelining for Indirections

15-745: Prefetching Arrays 26

for (i = 0; i<100; i++)
sum += A[index[i]];

Original Loop
for (i = 0; i<5; i++) /* Prolog 1 */

prefetch(&index[i]);
for (i = 0; i<5; i++) { /* Prolog 2 */

prefetch(&index[i+5]);
prefetch(&A[index[i]]);

}
for (i = 0; i<90; i++) { /* Steady State*/

prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 90; i<95; i++) { /* Epilog 1 */

prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 95; i<100; i++) /* Epilog 2 */

sum += A[index[i]];

Software Pipelined Loop (5 iterations ahead)

Carnegie Mellon

Indirection Prefetching Results

• larger overheads in computing indirection addresses
• significant overall improvements for IS and CG

15-745: Prefetching Arrays 27

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

Carnegie Mellon

Summary of Results
Dense Matrix Code:

– eliminated 50% to 90% of memory stall time
– overheads remain low due to prefetching selectively
– significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:
– expanded coverage to handle some important cases

15-745: Prefetching Arrays 28

8

Carnegie Mellon

Prefetching for Arrays: Concluding Remarks
• Demonstrated that software prefetching is effective

– selective prefetching to eliminate overhead
– dense matrices and indirections / sparse matrices
– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient memory bandwidth

15-745: Prefetching Arrays 29
Carnegie Mellon

Wednesday’s Class
• Prefetching Pointer-based Structures

3015-745: Prefetching Arrays

