Lecture 20
Global Scheduling & Software Pipelining

[ALSU 10.4-10.5]
1

Phillip B. Gibbons 15745: Global Scheduling & Software Pipelining

Scheduling Roadmap

List Scheduling: Global Scheduling: Software Pipelining:
® within a basic block e gcross basic blocks e across loop iterations

(lecture 15)

Carnegie Mellon -

15745: Global Scheduling 2

Review: List Scheduling

¢ The most common technique for scheduling instructions within a basic block

We don’t need to worry about:

— control flow \/

x=a+b
We do need to worry about:
— data dependences y=c+d

— hardware resources /\

« Even without control flow, the problem is still NP-hard

Carnegie Mellon -

15745: Global Scheduling 3

Review: The Data Precedence Graph (DPG)

* Two different kinds of edges:

DPG
I0: true “edges”: E @
I1: (read-after-write) e=(10,11)
12: “anti-edges”: E’ i
I3: (write-after-read) e =(1L12)
e=(I2,13)

* Why distinguish them?
— do they affect scheduling differently?
* What about output dependences?

15745: Global Scheduling 4

List Scheduling with Priorities

l

priority(z) = m’a’T(leleaves(DPG)VpGpaths(x,)] Z latency(p;))

pi=x
I0: a =1 Cycle
I1: £f=2a + x 0
I2: b =7
I3: ¢c =9 !
I4: g=£f +Db 2
I5: d = 13 3
I6: e = 19;
I7: h=f + ¢ 4
I8: j=d+y 5
I19: z = -1 6
I10: JMP L1

« 2 identical fully-pipelined FUs
* adds take 2 cycles; all other insts take 1 cycle

Carnegie Mellon -

15745: Global Scheduling 5

Scheduling Roadmap

Introduction to Global Scheduling

LD R6 <- 0(R1) B
Assume each clock can execute no,
2 operations of any kind P
BEQZ R6, L
if (a==0) goto L ID R7 <- 0(R2) |
nop
ST 0(R3) <- R7
. BB
L: L:|LD R8 <- O(R4)
nop
ADD R8 <- R8,R8
ST O0(R5) <- R8
LD R6 <- O0(Rl) ; LD R8 <- 0(R4) By
LD R7 <- 0(R2)
ADD R8 <- R8,R8 ; BEQZ R6, L
L. ‘/3_\ BB’
:|ST O(R5) <- R8 ST O(R5) <- R8 ; ST 0(R3) <- R7

Carnegie Mellon -

15745: Global Scheduling 7

x=a+b
=c+d
List Scheduling: Global Scheduling: Software Pipelining:
® within a basic block e gcross basic blocks e across loop iterations
Carnegie Mellon -
15745: Global Scheduling 6
Terminology
Control equivalence:
* Two operations o, and o, are control equivalent if o,
is executed if and only if o, is executed.
| | | Control dependence:
* Anop o, is control dependent on op o,
if the execution of 0, depends on the outcome of o,.
Speculation:
| | | * An operation o is speculatively executed if it is
executed before all the operations it depends on
(control-wise) have been executed.
* Requirements:
— does not raise an exception
— satisfies data dependences
Carnegie Mellon -
15745: Global Scheduling 8

Code Motions

Goal: Shorten execution time probabilistically
Moving instructions up:

¢ Move instruction to a cut set (from entry)
¢ Speculation: even when not anticipated.

Moving instructions down:

* Move instruction to a cut set (from exit)
* May execute extra instruction

* Can duplicate code

Carnegie Mellon -

15745: Global Scheduling 9

Review: Code Motion for Partial Redundancy Elimination

-~ cutset
-~

* Partial redundancy at p: redundant on some but not all paths
— Add operations to create a cut set containing a+b
— Note: Moving operations up can eliminate redundancy

* Constraint on placement: no wasted operation

— a+bis “anticipated” at B if its value computed at B will be used along ALL
subsequent paths

— a, b not redefined, no branches that lead to exit without use
* Range where a+b is anticipated 2 Choice

Carnegie Mellon -

15745: Global Scheduling 10

General-Purpose Applications

* Lots of data dependences
* Key performance factor: memory latencies

* Move memory fetches up

— Speculative memory fetches can be expensive

* Control-intensive: get execution profile

— Static estimation
* Innermost loops are frequently executed
— back edges are likely to be taken
« Edges that branch to exit and exception routines are not likely to be taken
— Dynamic profiling
* Instrument code and measure using representative data

Carnegie Mellon -

15745: Global Scheduling 11

]
A Basic Global Scheduling Algorithm

* Schedule innermost loops first
* Only upward code motion
* No creation of copies

* Move operations speculatively up only one branch

Carnegie Mellon -

15745: Global Scheduling 12

Program Representation

« Recall: A region in a control flow graph is:
— aset of basic blocks and all the edges connecting these blocks,
— such that control from outside the region must enter through a single entry block

* A procedure is represented as a hierarchy of regions
— The whole control flow graph is a region
— Each natural loop (single entry with back edge to it) in the flow graph is a region
— Natural loops are hierarchically nested

« Schedule regions from inner to outer

— treat inner loop as a black box unit
« can schedule around it but not into it
— ignore all the loop back edges = get an acyclic graph

Carnegie Mellon -

15745: Global Scheduling 13

]
Algorithm

Compute data dependences;
For each region from inner to outer {
For each basic block B in prioritized topological order {
CandBlocks = ControlEquiv{B}\U
Dominated-Successors{ControlEquiv{B}};
CandInsts = ready operations in CandBlocks;
For (t=0, 1, ... until all operations from B are scheduled) {
For (n in CandlInst in priority order) {
if (n has no resource conflicts at time t) {
S(n)=<B, t>
Update resource commitments
Update data dependences
}
}
Update CandInsts;
bl

Priority functions: non-speculative before speculative

Carnegie Mellon -

15745: Global Scheduling 14

Extensions

* Prepass before scheduling: loop unrolling

* Especially important to move operation up loop back edges

Carnegie Mellon -

15745: Global Scheduling 15

]
Global Scheduling Summary

* Global scheduling
— Legal code motions

— Heuristics

Carnegie Mellon -

15745: Global Scheduling 16

Scheduling Roadmap

x=a+b x=a+b
3 = c+d ’ = c+d
AN]
List Scheduling: Global Scheduling: Software Pipelining:
® within a basic block e gcross basic blocks ® across loop iterations

Carnegie Mellon -

15745: Software Pipelining 17

]
Example of DoAll Loops

¢ Machine:
— Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware loop op

and auto-incrementing addressing mode.

¢ Source code:
For i =1 ton
D[i] = A[i]*B[i] + ¢

* Code for one iteration:

1. LD R5,0(R1++)
LD R6,0(R2++)
MUL R7,R5,R6

ADD R8,R7,R4

SN o udswN

ST 0 (R3++) ,R8

* Little or no parallelism within basic block

Carnegie Mellon -

15-745: Software Pipelining 18

Loop Unrolling
1.L: LD
2. D Schedule after unrolling by a factor of 4
3. LD —
4. MUL LD
5. MUL LD
6. ADD LD
7. ADD LD
8. ST MUL D
9. MUL
10. ST ADD
11. ADD
12. ST
13. ST BL (L)

* Let ube the degree of unrolling:
— Length of u iterations = 7+2(u-1)
— Execution time per source iteration = (7+2(u-1)) /u= 2+ 5/u

Carnegie Mellon -

15-745: Software Pipelining 19

Software Pipelined Code

1. 1D
2. WD
3. MUL LD
4. LD
5. MUL LD
6. ADD LD
7. L: MUL LD
8. ST ADD LD BL (L)
9. MUL
10. ST ADD
11.
12. ST ADD
13.
14. ST

* Unlike unrolling, software pipelining can give optimal result
* Locally compacted code may not be globally optimal
* DOALL: Can fill arbitrarily long pipelines with infinitely many iterations

Carnegie Mellon -

15-745: Software Pipelining 20

Example of DoAcross Loop

Loop:

1.1LD // A[i]
Sum = Sum + A[i]; — 2. MUL // A[i]*c
B[i] = A[i] * c; 3.ADD // Sum += A[i]
4.8T // B[i]
Software Pipelined Code
1. 1D
2. MUL
3. ADD LD
4. ST MUL
5. ADD
6. ST

Doacross loops
* Recurrences can be parallelized
* Harder to fully utilize hardware with large degrees of parallelism

Carnegie Mellon -

15-745: Software Pipelining 21

Problem Formulation

— maximize throughput
— small code size

Impact of Resources on Bound on Initiation Interval

* Example: Resource usage of 1 iteration
— (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)

LD, LD, MUL, ADD, ST
* Lower bound on initiation interval?
for all resource i,
number of units required by one iteration: n;
number of units in system: R;
Lower bound due to resource constraints: max;|[—|

n;
Ri

Carnegie Mellon -

15-745: Software Pipelining 23

Find: s
— an identical relative schedule S(n) for 0 D
every iteration 1 MUL $T=2
— aconstant initiation interval (T) 2 ADD LD
3 ST MUL
such that ADD
— the initiation interval is minimized sT
Complexity:
— NP-complete in general
Carnegie Mellon -
15-745: Software Pipelining 22
Scheduling Constraints: Resources
Iteration 1
LD Alu ST
1. LD teration2
eration =
2. LD LD Alu ST T=2
3. MUL Iteration 3
4. LD Alu ST
5. @ Iteration 4 Steady State
£ LD Alu ST LD Alu ST
6. ADD = »
7. » =2
8. ST hd RT,
»
»

* RT: resource reservation table for single iteration
* RT;: modulo resource reservation table
RT[i] = Zy) (¢ moa 71y RTIt]

Carnegie Mellon -

15-745: Software Pipelining 24

Scheduling Constraints: Precedence

for (i = 0; i < n; i++) {
*(pt+) = *(qt+) + ¢

}
b) LD
1 <0,1>
ADD ADD <1,1>
2 <0.2>
ST ST
1 LD

1
2 ADD
(g ST
* Minimum initiation interval T? 1+2+1 =4
* S(n): schedule for n with respect to the beginning of the schedule
¢ Label edges with <§, d >
« & = iteration difference, d = delay

SxT+S(n,)—=S(ny) > d

Carnegie Mellon -

15-745: Software Pipelining 25

Minimum Initiation Interval

For all cycles c,

max . CycleLength(c) / IterationDifference (c)
T=4/1=4
oy O LD
i <0,1>
ADD ADD <L,1>
2 <02>
ST ST
1 LD
1
ADD
2.
ST

15-745: Software Pipelining 26

Example: An Acyclic Graph inside a loop

ON=="=

<0 a
b HEEN
<0,3
() > SRR
[+
<0,1>

Carnegie Mellon -

15-745: Software Pipelining 27

]
Algorithm: Software Pipelining Acyclic Dependence Graphs

* Find lower bound of initiation interval: T,
— based on resource constraints
¢ ForT=T, Ty+l, ... until all nodes are scheduled

— For each node n in topological order
* s, =earliest n can be scheduled

foreachs=sy,sy+1, ..., 5 +T-1
if NodeScheduled(n, s) break;
if n cannot be scheduled break;

.

.

* NodeScheduled(n, s)
— Check resources of n at s in modulo resource reservation table
* Can always meet the lower bound if:

— every operation uses only 1 resource, and
— no cyclic dependences in the loop

Carnegie Mellon -

15-745: Software Pipelining 28

Cyclic Graphs

* No such thing as “topological order”
*« b>cc>b
S(c)-S(b)>1
T+S(b)—S(c)>2

* Scheduling b constrains c, and vice versa
S(b) +1<S(c)<S(b)—-2+T See [ALSU 10.5.8] for Software

S(c)-T+2<5S(b)<S(c)-1
(© (b} <S(e) for cyclic dependence graphs

Carnegie Mellon -

15-745: Software Pipelining 29

A Closer Look at Register Allocation for Software Pipelining

Software-pipelined code:

Pipelining scheduling algorithm

1. LD 1. LD R5,0(R1++)
2. LD 2. LD R6,0(R2++)
3. MUL LD 3. MUL R7,R5,R6
4. 1D 4.
5. MUL LD 5.
6. ADD LD 6. ADD R8,R7,R4
L:7. MUL LD 7.
8. ST ADD LD BL L 8. ST O(R3++),R8
ER MUL LD
10. ST ADD LD
11. MUL
12. ST ADD
13.
14. ST ADD
What is the problem w.r.t. R7?
Carnegie Mellon -
15-745: Software Pipelining 30

Solution: Modulo Variable Expansion

1. LD R5,0(RL++)
2. LD R6,0(R2++)
3. LD R5,0(Rl++) MUL R7,R5,R6
4. LD R6,0(R2++)
5. LD R5,0(Rl++) MUL R9,R5,R6
6. LD R6,0(R2++) ADD R8,R7,R4
T 7. LD R5,0(R1++) MUL R7,R5,R6
8. LD R6,0(R2++) ADD R8,R9,R4 ST 0(R3++),R8
9. LD R5,0(Rl++) MUL R9,R5,R6
10. LD R6,0(R2++) ADD R8,R7,R4 ST 0(R3++) ,R8 BL L
1T, MUL R7,R5,R6
12, ADD R8,R9,R4 ST 0(R3++) ,R8
13.
14, ADD R8,R7,R4 ST 0(R3++),R8
15.
16. ST 0(R3++) ,R8

Carnegie Mellon -

15-745: Software Pipelining 31

Algorithm: Software Pipelining with Modulo Variable Expansion

* Normally, every iteration uses the same set of registers

— introduces artificial anti-dependences for software pipelining
* Modulo variable expansion algorithm

— schedule each iteration ignoring artificial constraints on registers

— calculate life times of registers

— degree of unrolling = max, (lifetime, /T)

— unroll the steady state of software pipelined loop to use different registers
* Code generation

— generate one pipelined loop with only one exit
(at beginning of steady state)

— generate one unpipelined loop to handle the rest
— code generation is the messiest part of the algorithm!

Carnegie Mellon -

15-745: Software Pipelining 32

Conclusions

* Numerical Code

Software pipelining is useful for machines with a lot of pipelining and
instruction level parallelism

Compact code
Limits to parallelism: dependences, critical resource

\/

a+b

E]
[

a+b

=c+d c+d

List Scheduling: Global Scheduling: Software Pipelining:
* within a basic block e gcross basic blocks ® across loop iterations

Carnegie Mellon -

15-745: Software Pipelining 33

Next Week: Prefetching

* Monday: Prefetching Arrays

¢ Wednesday: Prefetching Pointer-based Structures

Carnegie Mellon -

15-745: Global Scheduling & Software Pipelining 34

