
1

Carnegie Mellon

Lecture 20
Global Scheduling & Software Pipelining

Phillip B. Gibbons 15745: Global Scheduling & Software Pipelining 1

[ALSU 10.4-10.5]
Carnegie Mellon

Scheduling Roadmap

15745: Global Scheduling

…

List Scheduling:• within a basic block(lecture 15)

y = c + d
x = a + b

Global Scheduling:• across basic blocks

x = a + b

y = c + d
…

Software Pipelining:• across loop iterations

y = c + d
x = a + b

2

Carnegie Mellon

Review: List Scheduling
• The most common technique for scheduling instructions within a basic block
We don’t need to worry about:

– control flow
We do need to worry about:

– data dependences
– hardware resources

• Even without control flow, the problem is still NP-hard

15745: Global Scheduling

…y = c + d
x = a + b

3
Carnegie Mellon

Review: The Data Precedence Graph (DPG)
• Two different kinds of edges:

• Why distinguish them?
– do they affect scheduling differently?

• What about output dependences?

I0: x = 1;
I1: y = x;
I2: x = 2;
I3: z = x;

I2

I0

I3

I1

DPGCode
true “edges”: E(read-after-write) e = (I0,I1)

e = (I2,I3)

x
x “anti-edges”: E’(write-after-read) e’ = (I1,I2)

415745: Global Scheduling

2

Carnegie Mellon

List Scheduling with Priorities

I0: a = 1
I1: f = a + x
I2: b = 7
I3: c = 9
I4: g = f + b
I5: d = 13
I6: e = 19;
I7: h = f + c
I8: j = d + y
I9: z = -1
I10: JMP L1

I1
I8
I5

I6I4 I7
I3

I10
I9

I2
I0

Cycle
0
1
2
3
4
5
61

2 3 3 2 3

444 5

6

5

• 2 identical fully-pipelined FUs
• adds take 2 cycles; all other insts take 1 cycle
15745: Global Scheduling

Carnegie Mellon

Scheduling Roadmap

15745: Global Scheduling

…

List Scheduling:• within a basic block

y = c + d
x = a + b

Global Scheduling:• across basic blocks

x = a + b

y = c + d
…

Software Pipelining:• across loop iterations

y = c + d
x = a + b

6

Carnegie Mellon

Introduction to Global Scheduling
Assume each clock can execute2 operations of any kind

15745: Global Scheduling 7

if (a==0) goto L

e = d + d
c = b

L:

LD R6 <- 0(R1)
nop
BEQZ R6, L

LD R8 <- 0(R4)
nop
ADD R8 <- R8,R8
ST 0(R5) <- R8

LD R7 <- 0(R2)
nop
ST 0(R3) <- R7

L:

B1

B2

B3

LD R6 <- 0(R1) ; LD R8 <- 0(R4)
LD R7 <- 0(R2)
ADD R8 <- R8,R8 ; BEQZ R6, L

ST 0(R5) <- R8 ST 0(R5) <- R8 ; ST 0(R3) <- R7 L:

B1

B3’B3
Carnegie Mellon

Terminology
Control equivalence:
• Two operations o1 and o2 are control equivalent if o1 is executed if and only if o2 is executed.
Control dependence:
• An op o2 is control dependent on op o1if the execution of o2 depends on the outcome of o1.
Speculation:
• An operation o is speculatively executed if it is executed before all the operations it depends on (control-wise) have been executed.
• Requirements:

– does not raise an exception
– satisfies data dependences

15745: Global Scheduling 8

3

Carnegie Mellon

Code Motions
Goal: Shorten execution time probabilistically
Moving instructions up:
• Move instruction to a cut set (from entry)
• Speculation: even when not anticipated.

Moving instructions down:
• Move instruction to a cut set (from exit)
• May execute extra instruction
• Can duplicate code

15745: Global Scheduling 9

src

dst

dst dst

src

Carnegie Mellon

Review: Code Motion for Partial Redundancy Elimination

• Partial redundancy at p: redundant on some but not all paths
– Add operations to create a cut set containing a+b
– Note: Moving operations up can eliminate redundancy

• Constraint on placement: no wasted operation
– a+b is “anticipated” at B if its value computed at B will be used along ALL subsequent paths
– a, b not redefined, no branches that lead to exit without use

• Range where a+b is anticipated  Choice
15745: Global Scheduling 10

… = a+b

entry

… = a+b

… = a+b… = a+b

a = …
b = …

cut set

p:

Carnegie Mellon

General-Purpose Applications
• Lots of data dependences
• Key performance factor: memory latencies
• Move memory fetches up

– Speculative memory fetches can be expensive
• Control-intensive: get execution profile

– Static estimation
• Innermost loops are frequently executed

– back edges are likely to be taken
• Edges that branch to exit and exception routines are not likely to be taken

– Dynamic profiling
• Instrument code and measure using representative data

15745: Global Scheduling 11
Carnegie Mellon

A Basic Global Scheduling Algorithm
• Schedule innermost loops first
• Only upward code motion
• No creation of copies
• Move operations speculatively up only one branch

15745: Global Scheduling 12

4

Carnegie Mellon

Program Representation
• Recall: A region in a control flow graph is:

– a set of basic blocks and all the edges connecting these blocks,
– such that control from outside the region must enter through a single entry block

• A procedure is represented as a hierarchy of regions
– The whole control flow graph is a region
– Each natural loop (single entry with back edge to it) in the flow graph is a region
– Natural loops are hierarchically nested

• Schedule regions from inner to outer
– treat inner loop as a black box unit

• can schedule around it but not into it
– ignore all the loop back edges  get an acyclic graph

15745: Global Scheduling 13
Carnegie Mellon

Algorithm
Compute data dependences;
For each region from inner to outer {

For each basic block B in prioritized topological order {
CandBlocks = ControlEquiv{B} 

Dominated-Successors{ControlEquiv{B}};
CandInsts = ready operations in CandBlocks;
For (t = 0, 1, ... until all operations from B are scheduled) {

For (n in CandInst in priority order) {
if (n has no resource conflicts at time t) {

S(n) = < B, t >
Update resource commitments
Update data dependences

}
}
Update CandInsts;

}}}
Priority functions: non-speculative before speculative

15745: Global Scheduling 14

Carnegie Mellon

Extensions
• Prepass before scheduling: loop unrolling
• Especially important to move operation up loop back edges

15745: Global Scheduling 15

…

Carnegie Mellon

Global Scheduling Summary
• Global scheduling

– Legal code motions
– Heuristics

15745: Global Scheduling 16

5

Carnegie Mellon

Scheduling Roadmap

15745: Software Pipelining

…

List Scheduling:• within a basic block

y = c + d
x = a + b

Global Scheduling:• across basic blocks

x = a + b

y = c + d
…

Software Pipelining:• across loop iterations

y = c + d
x = a + b

17
Carnegie Mellon

Example of DoAll Loops
• Machine:

– Per clock: 1 read, 1 write, 1 (2-stage) arithmetic op, with hardware loop op and auto-incrementing addressing mode.
• Source code:

For i = 1 to nD[i] = A[i]*B[i] + c
• Code for one iteration:

1. LD R5,0(R1++)
2. LD R6,0(R2++)
3. MUL R7,R5,R64. 5. ADD R8,R7,R4
6.
7. ST 0(R3++),R8

• Little or no parallelism within basic block

15-745: Software Pipelining 18

Carnegie Mellon

Loop Unrolling
1.L: LD
2. LD
3. LD
4. MUL LD
5. MUL LD
6. ADD LD
7. ADD LD
8. ST MUL LD
9. MUL

10. ST ADD
11. ADD
12. ST
13. ST BL (L)
• Let u be the degree of unrolling:

– Length of u iterations = 7+2(u-1)
– Execution time per source iteration = (7+2(u-1)) / u = 2 + 5/u

15-745: Software Pipelining 19

Schedule after unrolling by a factor of 4

Carnegie Mellon

Software Pipelined Code
1. LD
2. LD
3. MUL LD
4. LD
5. MUL LD
6. ADD LD
7. L: MUL LD
8. ST ADD LD BL (L)
9. MUL

10. ST ADD
11.
12. ST ADD
13.
14. ST
• Unlike unrolling, software pipelining can give optimal result
• Locally compacted code may not be globally optimal
• DOALL: Can fill arbitrarily long pipelines with infinitely many iterations

15-745: Software Pipelining 20

6

Carnegie Mellon

Example of DoAcross Loop
Loop:

Sum = Sum + A[i];
B[i] = A[i] * c;

Software Pipelined Code1. LD
2. MUL
3. ADD LD
4. ST MUL
5. ADD
6. ST

Doacross loops
• Recurrences can be parallelized
• Harder to fully utilize hardware with large degrees of parallelism

15-745: Software Pipelining 21

1. LD // A[i]
2. MUL // A[i]*c
3. ADD // Sum += A[i]
4. ST // B[i]

Carnegie Mellon

Problem Formulation
Goals:

– maximize throughput
– small code size

Find:
– an identical relative schedule S(n) for every iteration
– a constant initiation interval (T)

such that
– the initiation interval is minimized

Complexity:
– NP-complete in general

15-745: Software Pipelining 22

S
0 LD
1 MUL
2 ADD LD
3 ST MUL

ADD
ST

T=2

Carnegie Mellon

Impact of Resources on Bound on Initiation Interval
• Example: Resource usage of 1 iteration

– (assume machine can execute 1 LD, 1 ST, 2 ALU per clock)
LD, LD, MUL, ADD, ST

• Lower bound on initiation interval?
for all resource i,

number of units required by one iteration: ninumber of units in system: Ri

Lower bound due to resource constraints: max௜⌈௡೔ோ೔⌉

15-745: Software Pipelining 23
Carnegie Mellon

Scheduling Constraints: Resources

• RT: resource reservation table for single iteration
• RTs: modulo resource reservation table

RTs[i] = t|(t mod T = i) RT[t]
15-745: Software Pipelining 24

LD Alu ST

LD Alu ST
LD Alu ST

LD Alu ST

Iteration 1

Iteration 2
Iteration 3

Iteration 4

T=2

Tim
e LD Alu STSteady State

T=2

1. LD
2. LD
3. MUL
4.
5.
6. ADD
7.
8. ST RTs

7

Carnegie Mellon

Scheduling Constraints: Precedence
for (i = 0; i < n; i++) {

*(p++) = *(q++) + c
}

• Minimum initiation interval T? 1+2+1 = 4
• S(n): schedule for n with respect to the beginning of the schedule
• Label edges with < , d >

•  = iteration difference, d = delay
 x T + S(n2) – S(n1)  d

15-745: Software Pipelining 25
Carnegie Mellon

Minimum Initiation Interval

For all cycles c,
max c CycleLength(c) / IterationDifference (c)

15-745: Software Pipelining 26

T = 4/1 = 4

Carnegie Mellon

Example: An Acyclic Graph inside a loop

15-745: Software Pipelining 27
Carnegie Mellon

Algorithm: Software Pipelining Acyclic Dependence Graphs
• Find lower bound of initiation interval: T0

– based on resource constraints
• For T = T0, T0+1, ... until all nodes are scheduled

– For each node n in topological order
• s0 = earliest n can be scheduled
• for each s = s0 , s0 +1, ..., s0 +T-1
• if NodeScheduled(n, s) break;
• if n cannot be scheduled break;

• NodeScheduled(n, s)
– Check resources of n at s in modulo resource reservation table

• Can always meet the lower bound if:
– every operation uses only 1 resource, and
– no cyclic dependences in the loop

15-745: Software Pipelining 28

8

Carnegie Mellon

Cyclic Graphs

• No such thing as “topological order”
• b c; c b S(c) – S(b)  1

T + S(b) – S(c)  2
• Scheduling b constrains c, and vice versa

S(b) + 1  S(c)  S(b) – 2 + T
S(c) – T + 2  S(b)  S(c) – 1

15-745: Software Pipelining 29

See [ALSU 10.5.8] for Software Pipelining scheduling algorithm for cyclic dependence graphs
Carnegie Mellon

A Closer Look at Register Allocation for Software Pipelining
Software-pipelined code:

1. LD
2. LD
3. MUL LD
4. LD
5. MUL LD
6. ADD LD

L:7. MUL LD
8. ST ADD LD BL L
9. MUL LD
10. ST ADD LD
11. MUL
12. ST ADD
13.
14. ST ADD

15-745: Software Pipelining 30

1. LD R5,0(R1++)
2. LD R6,0(R2++)
3. MUL R7,R5,R6
4.
5.
6. ADD R8,R7,R4
7.
8. ST 0(R3++),R8

What is the problem w.r.t. R7?

Carnegie Mellon

Solution: Modulo Variable Expansion
1. LD R5,0(R1++)
2. LD R6,0(R2++)
3. LD R5,0(R1++) MUL R7,R5,R6
4. LD R6,0(R2++)
5. LD R5,0(R1++) MUL R9,R5,R6
6. LD R6,0(R2++) ADD R8,R7,R4

L 7. LD R5,0(R1++) MUL R7,R5,R6
8. LD R6,0(R2++) ADD R8,R9,R4 ST 0(R3++),R8
9. LD R5,0(R1++) MUL R9,R5,R6
10. LD R6,0(R2++) ADD R8,R7,R4 ST 0(R3++),R8 BL L
11. MUL R7,R5,R6
12. ADD R8,R9,R4 ST 0(R3++),R8
13.
14. ADD R8,R7,R4 ST 0(R3++),R8
15.
16. ST 0(R3++),R8

15-745: Software Pipelining 31
Carnegie Mellon

Algorithm: Software Pipelining with Modulo Variable Expansion
• Normally, every iteration uses the same set of registers

– introduces artificial anti-dependences for software pipelining
• Modulo variable expansion algorithm

– schedule each iteration ignoring artificial constraints on registers
– calculate life times of registers
– degree of unrolling = maxr (lifetimer /T)
– unroll the steady state of software pipelined loop to use different registers

• Code generation
– generate one pipelined loop with only one exit (at beginning of steady state)
– generate one unpipelined loop to handle the rest
– code generation is the messiest part of the algorithm!

15-745: Software Pipelining 32

9

Carnegie Mellon

Conclusions
• Numerical Code

– Software pipelining is useful for machines with a lot of pipelining and instruction level parallelism
– Compact code
– Limits to parallelism: dependences, critical resource

15-745: Software Pipelining 33

List Scheduling:• within a basic block Global Scheduling:• across basic blocks
Software Pipelining:• across loop iterations

…y = c + d
x = a + b x = a + b

y = c + d
…y = c + d

x = a + b

Carnegie Mellon

Next Week: Prefetching
• Monday: Prefetching Arrays
• Wednesday: Prefetching Pointer-based Structures

3415-745: Global Scheduling & Software Pipelining

