Lecture 19
Array Dependence Analysis &

Parallelization

[ALSU 11.6]

Carnegie Mellon -

Phillip B. Gibbons 15-745: Parallelization

]
Data Dependence

S A=10
S,: B=A+20
St A=C-D
St A=B/C

We define four types of data dependence.

e Flow (true) dependence: a statement S; precedes a

statement S; in execution and S; computes a data value that
Sj uses.

e Implies that S; must execute before S;.

58's, (58S, and 5,8S,)

Carnegie Mellon -

Optimizing Compilers: Parallelization -2-

|
Data Dependence

S A=10
S,: B=A+20
S, A=C.7D
s,: A=B/C

We define four types of data dependence.

e Antidependence: a statement S; precedes a statement S; in
execution and S; uses a data value that S; computes.

o Itimplies that S; must be executed before S;.

58S, (55S)

Carnegie Mellon -

Optimizing Compilers: Parallelization 3-

|
Data Dependence

S A=10
S,: B=A+20
St A=C-D
St A=B/C

We define four types of data dependence.

e Oufput dependence: a statement S; precedes a statement S;
in execution and S; computes a data value that S; also
computes.

e It implies that S; must be executed before S;.

58S, (58S, and 5,8S,)

Carnegie Mellon -

Optimizing Compilers: Parallelization 4-

|
Data Dependence

S A=10
S,: B=A+20
S, A=C.7D
s,: A=B/C

We define four types of data dependence.

e Input dependence: a statement S; precedes a statement S;
in execution and S; uses a data value that S; also uses.

o Does this imply that S; must execute before S;?
58S, (58s,)

Carnegie Mellon -

Optimizing Compilers: Parallelization 5-

]
Data Dependence (continued)

o The dependence is said fo flow from S; to S; because S;
precedes S; in execution.

e S, is said to be the source of the dependence. S; is said to
be the sink of the dependence.

e The only “true” dependence is flow dependence; it
represents the flow of data in the program.

e The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

S A=10

S;: B=A+20
S, Al=C-D
S,: A2=B/C

Carnegie Mellon -

Optimizing Compilers: Parallelization -6-

Data Dependence (continued)

o Data dependence in a program may be represented using a
dependence graph 6=(V,E), where the nodes V represent
statements in the program and the directed edges E
represent dependence relations.

S;: A=10

S;: B=A+20 (5)

S;: A=C-D

: s (8
S,: A=BIC aI

Carnegie Mellon -

Optimizing Compilers: Parallelization 7-

]
Value or Location?

e There are two ways a dependence is defined: value-oriented
or location-oriented.

S;: A=1.0
S,: B=A+20
S;: A=C-D

S,: A=BIC

Carnegie Mellon -

Optimizing Compilers: Parallelization -8-

Example 1
i=2 ' i=3 ' i=4
fori=21to04{ si[2] 52[215 S,[3] 52[315 Si[4] S,[4]
Sitalil=b[i]+c[i]: RRils hbily Ghinils Shbiuls Sl

S, d[i]=ali] - : . |
} 3 | 5 1 8

O
al2] a[2] a[3] a[3] a[4] a[4]
e There is an instance of S; that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S; is the sink of the
dependence.

e The dependence flows between instances of statements in the
same iteration (loop-independent dependence).

e The number of iterations between source and sink (dependence
distance) is 0. The dependence direction is =.

538's, or 5%S,
Carnegie Mellon -

Optimizing Compilers: Parallelization 9-

Example 2
i=2 ' i=3 ' i=4
doi=2,4 Si2] SJ2]i Si[3] S.3]1 Sil4] S.[4]
Syia(i) = b(i) + c(i)
S, d(i) = a(i-1)
end do

e There is an instance of S, that precedes an instance of S, in
execution and S; produces data that S, consumes.

e S, is the source of the dependence; S; is the sink of the
dependence.

e The dependence flows between instances of statements in
different iterations (loop-carried dependence).

o The dependence distance is 1. The direction is positive (<).

58S, o 53
Carnegie Mellon -

Optimizing Compilers: Parallelization -10-

Example 3
i=2 ' i=3 ' i=4
doi=24 Si[2] Sf2]i Si[3] SA31i Sil4] S.[4]
St a(i) = b(i) + c(i) Rk Gkt SELEL SEEE TR
Sz d() = ali+D) s =
end do

a2 o) ' aB) o) ' a®) al5)
e There is an instance of S, that precedes an instance of S; in
execution and S, consumes data that S; produces.

e S, is the source of the dependence; S, is the sink of the
dependence.

e The dependence is loop-carried.
e The dependence distance is 1.
58S o S35

e Are you sure you know why it is S, 8¢ S, even though S, appears
before S, in the code?

Carnegie Mellon -

Optimizing Compilers: Parallelization 11

Example 4
doi=2,4 a(1,3) a(1,4) a(15)
doj=2,4 S[2,4]
S: a(ij) = a(i-1,j+1)
end do
end do

e Aninstance of S precedes
another instance of S and
S produces data that S
consumes.

e Sis both source and sink.
e The dependence is loop-

carried.
e The dependence distance
is (1,-1).
55(' 'S or 55('1 S a(4,2) a(4,3) a(4,4)

Carnegie Mellon -

Optimizing Compilers: Parallelization -12-

Problem Formulation

e Consider the following perfect nest of depth d:

doI =L,V array reference
doT,=L,,U, —_——
g al | fu@), .
oLy (o fl®)
a(f (D), £ (D), £(D) =
~o=a(g(X).g,(I), . 9,(T)) subscript subscript
enddo position function
2 or
enddo subscript
enddo expression
T= (I1’|2|'"|Id)
C=(,LyLy) linear functions
~ ¢ by +by Iy +b, I +---+ by Iy
U= (U1|U2|'"'Ud)
L<U
Optimizing Compilers: Parallelization 13-

]
Problem Formulation

o Dependence will exist if there exists two iteration vectors k
and jsuch that L<k<j<U and:

f1(R)=91(])
an - -
and fz(k).zgz(l)

0 8 =gm(D)

e Thatis:
fik)-a()=0
R -0.()) =0
and 2 : %)=
and - -
fm(k)_ gm(J) =0
Carnegie Mellon -
Optimizing Compilers: Parallelization 14-

Problem Formulation - Example

doi=2,4
Sytoa(i) = b(i) + c(i)
Syt d(i) = a(i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
2 <i; <i, <4 and such that:

ip=i, -1?

e Answer:yes; i;=2 & i,=3 and i1=3 & i, =4.

e Hence, there is dependencel

e The dependence distance vector is i -i; = 1.

e The dependence direction vector is sign(1) = <.

Carnegie Mellon -

Optimizing Compilers: Parallelization 15-

|
Problem Formulation - Example

doi=2,4
Sitoa(i) = b(i) + c(i)
Syt d(i) = a(i+1)
end do

e Does there exist two iteration vectors i; and i,, such that
2 <i; < i <4 and such that:

iy =i, +1?2

e Answer: yes; i;=3 & i,=2 and i;=4 & i, =3. (But, but!).
e Hence, there is dependencel!

e The dependence distance vector is iy-iy = -1.

e The dependence direction vector is sign(-1) = >.

e TIs this possible?

Carnegie Mellon -

Optimizing Compilers: Parallelization -16-

|
Problem Formulation - Example

doi=1,10
Syt a(2*i) = b(i) + c(i)
Syt d(i) = a(2*i+1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

2%y = 2%i, +1?
e Answer: no; 2%i; is even & 2%i,*1 is odd.

e Hence, there is no dependencel!

Carnegie Mellon -

Optimizing Compilers: Parallelization 17-

]
Problem Formulation

e Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraint!

e Analgorithm that determines if there exists two iteration
vectors k and | that satisfies these constraints is called a
dependence tester.

doT,=L,,U,
doT, ?|1/U2
doI, =L, U,

ﬂ(ﬁ(f),fz@),~‘~Lfm(f)) =
-~ =a(g(I), (), 9,(I)
epddo

enddé
enddo

Carnegie Mellon -

Optimizing Compilers: Parallelization -18-

|
Problem Formulation

e Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d constraint!

e Analgorithm that determines if there exists two iteration
vectors k and j that satisfies these constraints is called a
dependence tester.

o The dependence distance vector is given by | - k.
o The dependence direction vector is give by sign(j - k).
e Dependence testing is NP-complete!

e A dependence fest that reports dependence only when there is
dependence is said to be exact. Otherwise it is in-exact.

o A dependence test must be conservative; if the existence of
dependence cannot be ascertained, dependence must be assumed.

Carnegie Mellon -

Optimizing Compilers: Parallelization -19-

]
Dependence Testers

Lamport's Test.

GCD Test.

Banerjee's Inequalities.
Generalized 6CD Test.
Power Test.

I-Test.

Omega Test.

Delta Test.

Stanford Test.

etc..

Carnegie Mellon -

Optimizing Compilers: Parallelization -20-

|
Lamport's Test

e Lamport's Test is used when there is a single index variable
in the subscript expressions, and when the coefficients of
the index variable in both expressions are the same.

A(-,b*itcr,)=
o= A(,b¥it e,)

e The dependence problem: does there exist i; and i,, such
that L; <i; < i, < U; and such that
b*ij+¢;=b*i, +¢c,? or iz—i1=%?
e There is integer solution if and only if % is integer.

e The dependence distance is d = % if Li<|d] <V,

e d>0 = truedependence.
d=0 = loop independent dependence.
d<0 = anti dependence.

Carnegie Mellon -

Optimizing Compilers: Parallelization 21

|
Lamport's Test - Example

doi=1,n
doj=1,n
S: a(i§) = a(i-1,j+1)

/ enzngodo \

o ij=i,-1? o ji=j+1?
b=1¢=0/¢c,=-1 b=1¢=0¢c>=1
CGi—C2 c1—C2
G-C_q =1

b b
There is dependence. There is dependence.
Distance (i) is 1. Distance (§) is -1.

\ /

55&71) S or SB('Q)S

Carnegie Mellon -

Optimizing Compilers: Parallelization 22-

|
Lamport's Test - Example

doi=1,n
doj=1,n
S a(i,2%)) = a(i-1,2%j+1)

/ enzngodo \

o ijzi,-1? o 2%j = 2%+ 1?
b=1¢=0¢c=-1 b=2.¢,=0;¢,=1
ci—Co_y4 c-c__1

b b 2
There is dependence. There is no dependence.

Distance (i) is 1.

There is no aependence!

Carnegie Mellon -

Optimizing Compilers: Parallelization -23-

]
GCD Test

o Given the following equation:

Yli=13@iX; = ¢ where a; and c are integers

an integer solution exists if and only if:

ged(ay, ay, ..., a,) divides ¢

e Problems:
- ignores loop bounds
- gives no information on distance or direction of dependence

- often gcd(.....) is 1 which always divides c, resulting in false
dependences
Carnegie Mellon -

Optimizing Compilers: Parallelization -24-

|
GCD Test - Example

doi=1,10
Sioa(2*i) = b(i) + c(i)
S,o o d(i) = a(2*i-1)
end do

e Does there exist two iteration vectors i; and i,, such that
1<i; <i, <10 and such that:

2%i, = 2%i, -1?
or
2%i, - 2%i; = 12

e There will be an integer solution if and only if gcd(2,-2)
divides 1.

e This is not the case, and hence, there is no dependence!

Carnegie Mellon -

Optimizing Compilers: Parallelization -25-

]
GCD Test Example

doi=1,10
Sitoa(i) = b(i) + c(i)
S, d(i) = a(i-100)
end do

e Does there exist two iteration vectors i; and i, such that
1<i; <i, <10 and such that:

iy = i, -100?
or
iy - iy = 100?

e There will be an integer solution if and only if gcd(1,-1) divides
100.
e This is the case, and hence, there is dependence! Or is there?

Carnegie Mellon -

Optimizing Compilers: Parallelization -26-

|
Dependence Testing Complications

e Unknown loop bounds:
doi=1N
S a(i) = a(i+10)
end do

What is the relationship between N and 10?

e Triangular loops:

doi=1,N
doj=1,i-1
S: a(i.j) = a(j.i)
end do
end do

Must impose j < i as an additional constraint.

Carnegie Mellon -

Optimizing Compilers: Parallelization -27-

]
More Complications

e User variables:

doi=1,10
Syt a(i) = a(i+k)
end do

Same problem as unknown loop bounds, but occur due to
some loop transformations (e.g., loop bounds normalization).

doi=L,H
Sita(i) = a(i-1)
end do

U

doi=1H-L
Syt a(i+L) = a(i+L-1)
end do
Carnegie Mellon -

Optimizing Compilers: Parallelization -28-

More Complications

e Scalars:
doi=1,N doi=1N
Sy x=a(i) Sy x() = a(i)
S, b(i) = x = S, b(i) = ()
end do end do
j=N-1
doi=1,N doi=1N
Sy a(i) = a(j) = Sy ai) = a(N-i)
i jri-1
end do end do
sum =0 doi=1N
doi=1N = Syt sum(i) = a(i)
Syt sum = sum + a(i) end do
end do sum+= sum(i) i=1N
Carnegie Mellon [JI
Optimizing Compilers: Parallelization -29-

Loop Parallelization

e A dependence is said to be carried by a loop if the loop is the
outermost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
a(i, §) = ..
=a(i,)

b(i, j) = ...
. =b(, 1)

c@i, §) = ..

. = c(i-1,)
end do

end do

Carnegie Mellon -

Optimizing Compilers: Parallelization -30-

Loop Parallelization

e A dependence is said o be carried by a loop if the loop is the
outermost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
a(i, j) = ..
=a(i, j)
5" b(i, j) = .. o
=< = b(i, j-1)

61- C(i, J) =
= . = c(i-1, j)
end do
end do
e Outermost loop with a non "=" direction carries dependence!

Carnegie Mellon -

Optimizing Compilers: Parallelization 31

Loop Parallelization

The iterations of a loop may be executed
in parallel with one another if and only if
no dependences are carried by the loop!

Carnegie Mellon -

Optimizing Compilers: Parallelization 32-

]
Loop Parallelization - Example

fork
2 4

doi=2,n-1
doj=2,m-1
5. b(i, j) = ..
' . = b(i, j-1)
end do
end do

join

e Iterations of loop j must be executed sequentially, but the
iterations of loop i may be executed in parallel.

e Outer loop parallelism.
Carnegie Mellon -

Optimizing Compilers: Parallelization -33-

|
Loop Parallelization - Example

doi=2,n-1
doj=2,m-1
5 b, j) = .
<= = b(i-1, j)
end do
end do

e TIterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel.

e Inner loop parallelism.
Carnegie Mellon -

Optimizing Compilers: Parallelization -34-

]
Loop Parallelization - Example

doi=2,n-1
doj=2,m-1
5 b(@i,)= .
<< = b(i-1, j-1)
end do
end do

e TIterations of loop i must be executed sequentially, but the
iterations of loop j may be executed in parallel. Why?

e Inner loop parallelism.

Carnegie Mellon -

Optimizing Compilers: Parallelization -35-

]
Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n
doi=1,n
o a(ij) ..
end do
end do

Carnegie Mellon -

Optimizing Compilers: Parallelization -36-

Loop Interchange

Loop interchange changes the order of the loops to improve the
spatial locality of a program.

doj=1,n doi=1,n
doi=1,n doj=1,n
o aij) ... o a(ig) ...
end do end do
end do end do

m

Optimizing Compilers: Parallelization -37-

Loop Interchange

e Loop interchange can improve the granularity of parallelism!

doi=1,n doj=1,n
doj=1,n doi=1,n
a(i.j) = b(i.j) a(i.j) = b(i.j)
c(i,j) = a(i-1,j) c(ij) = a(i-1,j)
end do end do
end do end do
3t 3!
Carnegie Mellon -
Optimizing Compilers: Parallelization -38-

Loop Interchange

.
o
ds e

doi=1n ‘ M doj=1n

doj=1n 5t + doi=1n

wa(ig) <= ; w 6(iJ)

end do ' end do

end do & s end do

e When is loop interchange legal?

Carnegie Mellon -

Optimizing Compilers: Parallelization -39-

Loop Interchange

.
& T
i| o0-- s
doi=1n ' doj=1n
doj=1n 5t t doi=1n
.o a(ij) .. <= : e aig) -

end do end do
end do %4:>/ end do

e Whenis loop interchange legal?

Carnegie Mellon -

Optimizing Compilers: Parallelization 40-

10

Loop Interchange

J
doi=1n % doj=1n
doj=1n doi=1n
() o a(ij) ..
end do end do
end do ol end do

e When is loop interchange legal?

Carnegie Mellon -

Optimizing Compilers: Parallelization 41-

Loop Interchange

doi=1n doj=1n
doj=1n doi=1n
o a(ij) .. ()
end do end do
end do end do

e When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

Carnegie Mellon -

Optimizing Compilers: Parallelization -42-

Loop Blocking (Tiling)

doic=1,nB
dot=1T dojc=1,n,B
dot=1T doic=1,nB dot=1T
doi=1n doi=1B doi=18
doj=1n dojc=1,nB doj=18B
e 0(i§) . doj=18B .. a(icti-1,jc+j-1) ...
end do .. a(ic+i-1,je+j-1) ... end do
end do end do end do
end do end do end do
end do end do
end do

e When is loop blocking legal?

Carnegie Mellon -

Optimizing Compilers: Parallelization 43-

Wednesday's Class

e Global Scheduling, Software Pipelining [ALSU 10.4 - 10.5]

15-745: Parallelization

11

